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Problem 3 (Essay Question).
We consider a1 =(0,1,2,2,0), a2 =(1,1,4,0,0), a3 =(1,2,6,2,1), a4 =(−1,2,2,6,−1), a5 =(2,−2,0,1,0),
a6 = (−2,−2,1,0,0),

(a) To show that U := Span{a1,a2,a3} has dimension 3, it’s enough to show that the three vectors
are linearly independent, since the dimension is the number of elements in a linearly indepedent
spanning set (i.e. a basis). The dimension of the span is the rank of the matrix whose rows or
columns consists of these vectors. Using Maple, we find the reduced row echelon form:

RREF([a1,a2,a3]) =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


which has three pivots, so this matrix has rank 3.
To write a4 as a linear combinatation, we solve: c1a1 + c2a2 + c3a3 = a4 via row operations on the
augmented matrix:

RREF([a1,a2,a3,a4]) =


1 0 0 4
0 1 0 0
0 0 1 −1
0 0 0 0
0 0 0 0

 ,

the solution is (c1,c2,c3) = (4,0,−1), so a4 = 4a1−a3.
(b) We have a1 · (a2−a1) = 9−9 = 0, so these two vectors are already orthogonal. Since they span the

same space as a1 and a2, the three vectors

u1 = a1, u2 = a2−a1, u3 = a3,

are still a basis for U , and we can apply Gram-Schmidt to them to get an orthonormal basis, with q1
proportional to a1 and q2 proportional to a2−a1.

Since the first two vectors are already orthogonal, we only need to normalize them:

q1 =
u1

|u1|
=

1
3
(0,1,2,2,0), q2 =

u2

|u2|
=

1
3
(1,0,2,−2,0),

then finally:

w3 = u3− (u3 ·q1)q1− (u3 ·q2)q2

= (0,0,0,0,1),

and:
q3 =

w3

|w3|
= (0,0,0,0,1).

As linear combinations of a1, a2 and a3, we have:

q1 =
1
3

a1, q2 =
1
3
(a2−a1)

and to find the coeffients of q3 we can solve the equation: c1a1 + c2a2 + c3a3 = q3, either by row
reducing the matrix [a1,a2,a3|q3], or using Maples LinearSolve, to get

q3 = a3−a1−a2.
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(c) The dot products of a5 and a6 with any of q1,q2,q3 is zero, and so will it be with any linear combi-
nation of these vectors, so a5, a6 ∈U⊥.
The vectors (q1,q2,q3,a5,a6) are all orthogonal to each other (since a5 ·a6 = 0 too). If we just divide
the last two by their lengths, then they are an orthonormal set of 5 vectors, hence an orthonormal
basis. So we set

q4 =
a5

|a5|
=

1
3
(2,−2,0,1,0) q5 =

a6

|a6|
=

1
3
(−2,−2,1,0,0)

(d) To find the matrix of f , we need to find what it does to each of the basis vectors. Since q1 and q2
are respectively proportional to a1 and a2−a1, the eigenvalue information says:

f (q1) = q1, f (q2) =−q2.

We have U⊥ = Span{q4,q5}, so if this is the kernel of f we have:

f (q4) = f (q5) = 0.
Finally, we showed that q3 = a3−a1−a2, so:

f (q3) = f (a3−a1−a3) = f (a3)− f (a1)− f (a2)

= a4−2 f (a1)− f (a2−a1)

= (4a1−a3)−2a1 +(a2−a1)

= a1 +a2−a3

= −q3.

Hence the mapping matrix is:

q fq =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0

 .

If we restrict f to U = Span{q1,q2,q3}, we get the matrix:

P =

 1 0 0
0 −1 0
0 0 −1


which is an orthogonal matrix and therefore preserves the salar product (hence preserves lengths
and angles of vectors). However, on the whole of R4, f does not preserve lengths and angles: for
instance f (q4) = 0, which does not have the same length as q4.

(e) The change of basis matrix is:

eMq = [q1, . . .q5] =


0 1/3 0 2/3 −2/3

1/3 0 0 −2/3 −2/3
2/3 2/3 0 0 1/3
2/3 −2/3 0 1/3 0
0 0 1 0 0

 .

Writing qMe = ( eMq)
T . the mapping matrix for f in the standard basis is:

e fe = eMq q fq qMe =
1
9


−1 0 −2 2 0
0 1 2 2 0
−2 2 0 8 0
2 2 8 0 0
0 0 0 0 −9

 .

This matrix is symmetric, since it is equal to its transpose.


