Homework set 4

Eigenvalue Problems

For the evaluation of this homework set the focus will be on your ability to

- solve systems of differential equations using the diagonalization method
- solve initial condition problems
- operate with mapping matrices and change-of-basis matrices
- understand the geometric meaning of eigenvalues and eigenvectors
- use the GramSchmidt algorithm
- understand the meaning of the dot product in regards to lengths and angles
- use Maple for investigations and visualization
- write coherently an precisely and can perform simple mathematical reasoning

Deadline for upload: Sunday November 26 at 23:55. Remember to hand in your assignment as .pdf.

Problem 1 Initial Condition Problem for System of Differential Equations

For $a \in \mathbb{R}$ a system of differentiaal equations is given in matrix form by

$$\mathbf{x}'(t) = \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -\frac{17}{4} & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}.$$

a) State in vector form the complete complex solution to the differential equation system and determine those solutions, expressed via real functions, that fulfill the initial condition

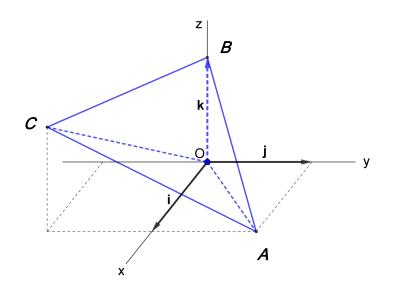
$$\mathbf{x}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 16 \\ 0 \end{bmatrix}.$$

b) The solution found in the previous question is to be illustrated in two ways. First, x_1 and x_2 must be drawn as two functions of $t \in [0, 2\pi]$ in the same coordinate system. Next, the trajectory curve that the point (x_1, x_2) has covered after time $t \in [0, 2\pi]$ must be drawn. Comment on the two visualizations.

HOMEWORK SET 4

Problem 2 Distances in (x, y, z) **Space**

A tetrahedron T_1 in (x, y, z) space has the corners: origin = (0, 0, 0), A = (1, 1, 0), B = (0, 0, 1) and C = (1, -1, 1), see the figure.



a) Compute the volume of T_1 .

We now consider a matrix **F** given by

$$\mathbf{F} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$$

b) Compute the eigenvalues of **F** and the corresponding eigenspaces.

Let G_3 denote the set of geometric vectors in (x, y, z) space drawn from the origin. A linear map $f : G_3 \to G_3$ has with respect to the standard basis in G_3 the mapping matrix **F** which is given above.

- c) We consider the vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} . Justify that the image vectors by f of the three vectors appear from a scaling (extension) of the three vectors in a direction away from the origin, and state for each of the vectors the scaling factor. The end points of the three image vectors constitute, along with the origin, a new tetrahedron T_2 . Find a relation between the volumes of T_1 and T_2 and the mentioned scaling factors.
- d) The corners in T_1 are themselves image points by f of the corners in a tetrahedron T_0 . Determine the volume of T_0 .

HOMEWORK SET 4

Problem 3 Orthogonal Eigenspaces in \mathbb{R}^3

In \mathbb{R}^3 we consider the vector $\mathbf{u} = (1, -1, -1)$ and the subspace $U_1 = \text{span} \{\mathbf{u}\}$. Let U_2 denote the orthogonal compliment in \mathbb{R}^3 to U_1 .

a) Determine a basis for \mathbb{R}^3 that is a composition of an orthogonal basis for U_1 and an orthogonal basis for U_2 .

Let *a* and *b* be arbitrary real numbers. A linear map $f : \mathbb{R}^3 \to \mathbb{R}^3$ has the eigenspaces $E_a = U_1$ and $E_b = U_2$.

b) Determine a mapping matrix ${}_{e}\mathbf{F}_{e}$ of f with respect to the standard basis in \mathbb{R}^{3} .

We now use the values a = 2 and b = -2.

c) The vectors w₁ = (1,1,0) and w₂ = (1,0,1) are given. Show that the angle between w₁ and w₂ is the same as the angle between the images by *f* of w₁ and w₂. Does it apply generally that the angle between two vectors is equal to the angle between their image vectors?

End of problem sheet