2-hour test in 01006 Advanced Engineering Mathematics May 11 2022

shsp 10.5.22

Problem 1

```
> 
restart: with(LinearAlgebra):
```
> fx:=6*x-6*y About a function $f: \mathbb{R}^2 \to \mathbb{R}$ it is given that the two first-order partial derivatives are

$$
fx := 6x - 6y \tag{1.1}
$$

> fy:=6*y^2-6*x and

$$
f y := 6 y^2 - 6 x \tag{1.2}
$$

Question 1

 $\nabla f(x, y) = (f_x(x, y), f_y(x, y)) = (6x - 6y, 6y^2 - 6x) = (0, 0)$
 $6x - 6y = 0$ and $6y^2 - 6x = 0$ $x = y$ and $y(y - 1) = 0$ $y = 0$ and $x = 0$ or $y = 1$ and $x = 1$. All stationary points for *f* are then $(0, 0)$ and $(1, 1)$.

Question 2

The 2nd-order partial derivatives of *f* are **> fxx:=diff(fx,x);fxy:=diff(fx,y);fyy:=diff(fy,y);** $fxx := 6$ $f_{xv} := -6$ $f_{VV} := 12 v$ **(1.2.1)**

> H(x,y):=<fxx,fxy;fxy,fyy> The Hessian matrix of *f* at point (x, y) is

$$
H(x, y) := \begin{bmatrix} 6 & -6 \\ -6 & 12 y \end{bmatrix}
$$
 (1.2.2)

If *f* has local extremum at a point then that point must be a stationary point since *f* has no exceptional points.

> H(0,0):=subs(x=0,y=0,H(x,y))

$$
H(0,0) := \left[\begin{array}{cc} 6 & -6 \\ -6 & 0 \end{array} \right] \tag{1.2.3}
$$

(1.2.4)

> Eigenvalues(H(0,0),output=list) $\left[3 + 3\sqrt{5}, 3 - 3\sqrt{5}\right]$

As the two eigenvalues of $H(0, 0)$ have opposite signs, we can conclude that f has neither local maximum nor local minimum in the stationary point (0, 0).

> H(1,1):=subs(x=1,y=1,H(x,y))

$$
H(1, 1) := \left[\begin{array}{cc} 6 & -6 \\ -6 & 12 \end{array} \right]
$$
 (1.2.5)

> Eigenvalues(H(1,1),output=list)

$$
[9+3\sqrt{5}, 9-3\sqrt{5}]
$$
 (1.2.6)

As both eigenvalues of **H**(1, 1) are positive, we can conclude that *f* has a proper local minimum in the stationary point (1, 1).

Question 3

It is now given that $f(0, 0) = 1$. The approximating 2nd-degree polynomial of *f* with expansion point (0, 0) is $P_2(x, y) =$

$$
f(0, 0) + f_x(0, 0)x + f_y(0, 0)y + \frac{1}{2}f''_{xx}(0, 0)x^2 + f''_{xy}(0, 0)xy + \frac{1}{2}f''_{yy}(0, 0)y^2 = 1 + 3x^2 - 6xy.
$$

Problem 2

```
> 
restart:
 with(plots):
 prik:=(x,y)->VectorCalculus[DotProduct](x,y):
 kryds:=(x,y)->convert(VectorCalculus[CrossProduct](x,y),Vector):
  `vekdif`:=proc(X,Y) convert(diff(convert(X,list),Y),Vector) end 
 proc:
  `vop`:=proc(X) op(convert(X,list)) end proc:
```
A function $h : \mathbb{R}^2 \to \mathbb{R}$ is given by the expression

```
> h := (x, y) - 2x - y + 1
```

$$
h := (x, y) \mapsto 2 \cdot x - y + 1 \tag{2.1}
$$

The rectangle M_1 is located in the (x, y) place in (x, y, z) space and is given by M_1 = {(x, y) | 0 \leq x \leq 2, 0 \leq y \leq 1}.

Let G_1 denote the part of the graph of h that is located vertically above M_1 .

Question 1

```
A parametric representation of G<sub>1</sub> is
```

```
> 
r:= (u,v)-><u,v,2*u-v+1>:
> 
r(u,v)
                                                \begin{vmatrix} u \\ v \\ 2u - v + 1 \end{vmatrix}(2.1.1)
```
where $u \in [0; 2]$ and $v \in [0; 1]$. The normal vector of the surface is **> N:=kryds(diff(r(u,v),u),diff(r(u,v),v))**

$$
N := \left[\begin{array}{c} -2 \\ 1 \\ 1 \end{array} \right]
$$
 (2.1.2)

> Jacobian:=sqrt(prik(N,N)) The corresponding Jacobian function is

Jacobian :=
$$
\sqrt{6}
$$
 (2.1.3)

$$
\int_{G_1} 1 \, d\mu = \int_0^1 \int_0^2 Jacobian(u, v) du dv = \int_0^1 \int_0^2 \sqrt{6} \, du dv = 2\sqrt{6}.
$$

The straight line segment between the points $(0, 1)$ and $(2, 0)$ divide $M₁$ in to parts. Let $M₂$ denote the lower part and let G_2 denote the part of the graph of *h* that is located vertically above M_2 .

Question 2

 $Ar(G_1) =$

The straight line segment between the points (0, 1) and (2, 0) has the equation $y = 1 - \frac{x}{2}$.

A parametric representation of M_2 is then

$$
\mathbf{r}(u, v) = (u, 0) + v(0, 1 - \frac{u}{2}) = (u, v(1 - \frac{u}{2}), \text{ where } u \in [0, 2] \text{ and } v \in [0, 1].
$$

From this we construct the following parametric representation of G_2

> r(u,v) > r:=(u,v)-><u,v*(1-u/2),2*u-v*(1-u/2)+1>:

$$
\begin{array}{c}\nu \\
v\left(1-\frac{u}{2}\right) \\
2u-v\left(1-\frac{u}{2}\right)+1\n\end{array}
$$
\n(2.2.1)

where $u \in [0, 2]$ and $v \in [0, 1]$.

The normal vector of the surface is

> N:=simplify(kryds(diff(r(u,v),u),diff(r(u,v),v)))

$$
N := \begin{bmatrix} -2 + u \\ 1 - \frac{u}{2} \\ 1 - \frac{u}{2} \end{bmatrix}
$$
 (2.2.2)

The corresponding Jacobian function is

> Jacobian:=sqrt(prik(N,N)) assuming -2+u<0

Jacobian :=
$$
\frac{\sqrt{6} (2 - u)}{2}
$$
 (2.2.3)

Question 3

> f(x,y,z) > f:=(x,y,z)->x+y+z-1: Let f be given by

$$
x+y+z-1 \tag{2.3.1}
$$

here $(x, y, z) \in \mathbb{R}^3$.

The wanted surface integral is

 $\int_{G_2} f d\mu = \int_0^1 \int_0^2 f(\mathbf{r}(u, v)) \operatorname{Jacobi}(u, v) du dv$

> integrand:=f(vop(r(u,v)))*Jacobian

$$
integrand := \frac{3 u \sqrt{6} (2 - u)}{2}
$$
 (2.3.2)

> Int(Int(integrand,u=0..2),v=0..1)=int(int(integrand,u=0..2),v=0. .1)

$$
\int_0^1 \int_0^2 \frac{3 u \sqrt{6 (2 - u)}}{2} du dv = 2 \sqrt{6}
$$
 (2.3.3)

Problem 3

> restart:with(LinearAlgebra):with(plots):

A solid body *L* in (*x*, *y*, *z*) space is given by the parametric representation

> r:=(u,v,w)-><v*u^2*cos(w),v*u^2*sin(w),u>: > r(u,v,w)

$$
\begin{bmatrix} v u^2 \cos(w) \\ v u^2 \sin(w) \\ u \end{bmatrix}
$$
 (3.1)

where $u \in [0; 1]$, $v \in [0; 1]$ and $w \in [0; \frac{\pi}{2}]$ (see the figure in the question text).

(3.1.1) > M:=<diff(r(u,v,w),u)|diff(r(u,v,w),v)|diff(r(u,v,w),w)> > Jr:=simplify(Determinant(M)) Question 1

$$
J_r := u^4 v \tag{3.1.2}
$$

which is greater than or equal to zero since $v \geq 0$. The corresponding Jacobian is thus

> Jacobian:=Jr

$$
Jacobian := u^4 v \tag{3.1.3}
$$

Question 2

We consider the vector field

> V:=(x,y,z)-><x+exp(y*z),2*y-exp(x*z),3*z+exp(x*y)>:

> V(x,y,z)

$$
\begin{array}{c}\nx + e^{yz} \\
2y - e^{xz} \\
3z + e^{yx}\n\end{array}
$$
\n(3.2.1)

 ∂L is the closed surface of L with an orientation according to outwards-pointing unit normal vector. From the Gauss Divergence Theorem we then get

Flux(V,
$$
\partial L
$$
) =
$$
\int_{L} \text{Div}(\mathbf{V}) d\mu = \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \int_{0}^{1} \text{Div}(\mathbf{V}) (\mathbf{r}(u, v, w)) \text{Jacobian}(u, v, w) du dv dw
$$

> div:=V->VectorCalculus[Divergence](V):

> DivV:=div(V)(x,y,z)

$$
Div V := 6 \tag{3.2.2}
$$

> integrand:=DivV*Jacobian

$$
integrand := 6 u4 v \tag{3.2.3}
$$

> Int(integrand,[u=0..1,v=0..1,w=0..Pi/2])=int(integrand,[u=0..1,v= 0..1,w=0..Pi/2])

$$
\int_0^{\frac{\pi}{2}} \int_0^1 \int_0^1 6 u^4 v \, du \, dv \, dw = \frac{3 \pi}{10}
$$
 (3.2.4)

Question 3

A parametric representation of a profile area *F* in the (*x*, *z*) plane which forms the solid body *L* according to the description in the question text is achieved by setting $w = 0$ in the given parametric representation of *L*.

```
> 
s:=(u,v)-><v*u^2,0,u>:
```
> s(u,v)

$$
\begin{array}{c}\n\begin{bmatrix}\n\frac{v u^2}{2} \\
u\n\end{bmatrix}\n\end{array}
$$
\n(3.3.1)

```
> 
plot3d(s(u,v),u=0..1,v=0..1,scaling=constrained,axes=normal,view=
where u \in [0; 1] and v \in [0; 1].
  0..1,orientation=[-120,70],color=yellow)
```


Problem 4

```
> 
restart:with(plots):with(LinearAlgebra):
 prik:=(x,y)->VectorCalculus[DotProduct](x,y):
 vop:=proc(X)op(convert(X,list))end proc:
```
Let *a* be a positive real number. A flowcurve *K* of a smooth vector field **V** in (x, y, z) space is given by the parametric representation

> r(t) > r:=t-><exp(-t),cos(t)-sin(t),cos(t)+sin(t)>:

$$
\begin{array}{c}\n e^{-t} \\
 \cos(t) - \sin(t) \\
 \cos(t) + \sin(t)\n \end{array}
$$
\n(4.1)

where $t \in [0; a]$.

Question 1

The corresponding Jacobian is **> Jacobian:=simplify(sqrt(prik(diff(r(t),t),diff(r(t),t))))** Jacobian $:=\sqrt{e^{-2t}+2}$ **(4.1.1)**

which means that $m = 2$ and $n = 2$.

Question 2

Since *K* is a flow curve for the vector field **V**, then we have the relationship $V(r(t)) = r'(t)$ for all $t \in [0;$ a]. From this it follows that

Tan(V, K) =
$$
\int_K
$$
 $\mathbf{V} \cdot \mathbf{e} d\mu = \int_0^a \mathbf{V}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^a \mathbf{r}'(t) \cdot \mathbf{r}'(t) dt = \int_0^a (\text{Jacobian}(t))^2 dt$.

Question 3

>

Let $a = 5$, and then we can calculate

> Tan:=Int(Jacobian^2,t=0..5)=int(Jacobian^2,t=0..5)

$$
Tan := \int_0^5 (e^{-2t} + 2) dt = \frac{21}{2} - \frac{e^{-10}}{2}
$$
 (4.3.1)

- **> curve:=spacecurve(r(t),t=0..5,color=red,axes=normal): pnt:=pointplot3d([[1,1,1],[vop(r(5))]],symbol=solidcircle, symbolsize=15):**
- **> display(curve,pnt,tickmarks=[3,3,3],scaling=constrained, orientation=[-65,80,0]);**

