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shsp 10.5.22

Problem 1

> restart: with(LinearAlgebra):

About a function f: R?>—R it is given that the two first-order partial derivatives are
> fx:=6*x-6%*y
fxi=6x—06y (1.1)

and
> fy:=6*y*2-6*x

fri=6)"—6x (1.2)

Question 1

VA0, ) = (f (6 9SG 7)) = (65— 63,6)" = 6x)=(0,0) 6x—6y=0and 6> — 6x=0
x=yandy(y—1)=0 y=0andx=0ory=1andx=1.
All stationary points for f'are then (0, 0) and (1, 1).

Question 2

The 2nd-order partial derivatives of f are
> fxx:=diff (fx,x);fxy:=diff (fx,y) ;fyy:=diff (fy,y)

fox = 6
Jxy = —6
Sy=12y 1.2.1)
The Hessian matrix of fat point (x, y) is
> H(x,y) :=<fxx, fxy; fxy, fyy>
6 —6
H(x,y) = 6 12 (1.2.2)

If f has local extremum at a point then that point must be a stationary point since / has no exceptional
points.

> H(0,0) :=subs (x=0,y=0,H(x,y))

6 —6

e 0 (1.2.3)

H(0,0) =

> Eigenvalues (H(0,0) ,output=list)
[3+3/5,3-3/5] (1.2.4)

As the two eigenvalues of H(0, 0) have opposite signs, we can conclude that /" has neither local
maximum nor local minimum in the stationary point (0, 0).
> H(1,1) :=subs(x=1,y=1,H(x,y))



6 —6

AL =1 ¢ 1,

(1.2.5)

> Eigenvalues (H(1,1) ,output=list)

[9+35,9-3/5] (1.2.6)

As both eigenvalues of H(1, 1) are positive, we can conclude that f has a proper local minimum in the
stationary point (1, 1).

Question 3
It is now given that f0, 0) = 1.

The approximating 2nd-degree polynomial of f* with expansion point (0, 0) is
Py, y) =
2

1 1
£(0,0) + (0,0 +/,(0,0)y + — " (0, 01" + 1", (0, 0)xy + —",,(0, 0" =

1+—3x2—-6xy

Problem 2

> restart:
with (plots):
prik:=(x,y) ->VectorCalculus[DotProduct] (x,y) :
kryds:=(x,y) ->convert (VectorCalculus[CrossProduct] (x,y) ,Vector) :
“vekdif :=proc(X,Y) convert(diff (convert(X,list) ,hbY),h Vector) end
proc:
“vop " :=proc(X) op(convert(X,list)) end proc:

A function % : R>>R is given by the expression
> h:=(x,y) ->2*x-y+1

h=(x,y)»2x—y+1 2.1)
The rectangle M, is located in the (x, y) place in (x, y, z) space and is given by
M={xy)|0<x<20<y<1}
Let G, denote the part of the graph of h that is located vertically above M,.

Question 1
A parametric representation of G, is

> r:= (u,v)-><u,v,2*u-v+1>:
> r(u,v)

% (2.1.1)
2u—v—+1

where u€[0; 2] and ve[0; 1].
The normal vector of the surface is



> N:=kryds(diff(r(u,v) ,u) ,diff(r(u,v),v))

—2
N := 1 (2.1.2)
1
The corresponding Jacobian function is
> Jacobian:=sqrt (prik (N,N))
Jacobian == \[6 (2.1.3)
1.2 1.2
AXG,)) =J 1 duzj J Jacobian(, v)du dV:J J J6 dudv=2J%6 .
0

G 070 0
1
The straight line segment between the points (0, 1) and (2, 0) divide M, in to parts. Let M, denote the
lower part and let G, denote the part of the graph of / that is located vertically above M, .

Question 2

The straight line segment between the points (0, 1) and (2, 0) has the equation y =1 — % .

A parametric representation of M, is then

r(u, v) = (u, 0) + (0, 1 — %)Z(u, Wl — %), where € [0 ;2] and ve[0 :1].

From this we construct the following parametric representation of G,

> r:=(u,v)-><u,v*¥(1-u/2) ,2*u-v* (1-u/2)+1>:
> r(u,v)

L
Y ( 2 ) 2.2.1)

where u€[0; 2] andve([0; 1].
The normal vector of the surface is
> N:=simplify(kryds (diff(r(u,v) ,u) ,diff(r(u,v),v)))

-2+u

u
1 -
N = 2 (2.2.2)

1 —

=

The corresponding Jacobian function is
> Jacobian:=sqrt (prik (N,N)) assuming -2+u<0

M (2.2.3)

Jacobian :=
acobian >



Question 3

Letf be given by
> f:=(x,y,z) ->xty+z-1:
> f(x,y,2)
x+y+z—1 2.3.1)
here (x, y, 2)€ R.
The wanted surface integral is
1.2
J fduzj Jf(r(u, v)) Jacobi(u, v)du dv
G2 0-0
> integrand:=f (vop(r (u,v))) *Jacobian
3 6 (2—
integrand = “ \/—2( u) (2.3.2)

> Int(Int(integrand,u=0..2) ,v=0..1)=int(int (integrand,u=0..2) ,v=0.
.1)

.1‘2
‘ { 3uﬁ2(2—u) dudv=25 (2:3.3)
0

0

Problem 3

> restart:with (LinearAlgebra) :with (plots):

A solid body L in (x, y, z) space is given by the parametric representation
> r:=(u,v,w)-><v*u*2*cos (w) ,v¥u*2*sin(w) ,u>:
> r(u,v,w)

' cos(w)
v sin(w) @3.1)

u

where u€[0; 1], vE[0; 1] and wE[0; g] (see the figure in the question text).

Question 1
> M:=<diff(r(u,v,w),u) |diff(r(u,v,w),v)|diff(r(u,v,w) , w)>

2vucos(w) u’ cos(w) vt sin(w)
M= 2vusin(w) u’sin(w) vu’cos(w) (3.1.1)
1 0 0

> Jr:=simplify (Determinant (M))
Jri=u'v (3.1.2)

which is greater than or equal to zero since v> 0. The corresponding Jacobian is thus



> Jacobian:=Jr
Jacobian == u* v (3.1.3)

Question 2

We consider the vector field
> V:i=(x,y,z) -><x+texp(y*z) ,2*y-exp (x*z) ,3*z+exp (x*y) >:
> Vi(x,y,z)

x+e”*
2y— e’ 3.2.1)
3z4+ ¢

0L is the closed surface of L with an orientation according to outwards-pointing unit normal vector.
From the Gauss Divergence Theorem we then get
T

2 1.1
Flux(V,dL) = J Div(V) du = J J j Div (V) (e, v, w))Jacobian(, v, w) du dv dw
L 0 70”0
> div:=V->VectorCalculus[Divergence] (V) :
> DivV:=div (V) (x,y, z)
Divl =6 3.2.2)
> integrand:=DivV*Jacobian
integrand == 6 utv 3.2.3)

> Int(integrand, [u=0..1,v=0..1,w=0..Pi/2])=int(integrand, [u=0..1,v=
0..1,w=0..Pi/2])

s

11
I l 6 utv du dvdw= L 3.2.4)
Jo o 10

0

Question 3

A parametric representation of a profile area F'in the (x, z) plane which forms the solid body L according
to the description in the question text is achieved by setting w = 0 in th egiven parametric representation
of L.

> s:=(u,v)-><}v*u*2,0,u>:

> s(u,v)

0 (3.3.1)

where u€[0; 1] and ve[0; 1].
> plot3d(s(u,v) ,u=0..1,v=0..1,scaling=constrained, axes=normal ,view=
0..1,orientation=[-120,70] ,color=yellow)



Problem 4

> restart:with (plots) :with(LinearAlgebra) :
prik:=(x,y) ->VectorCalculus[DotProduct] (x,y) :
vop:=proc (X) op (convert (X,list) )end proc:
Leta be a positive real number. A flowcurve K of a smooth vector field V in (x, y, z) space is given by
the parametric representation
> r:=t-><exp(-t) ,cos(t)-sin(t) ,cos(t)+sin(t)>:
> r(t)

-t
€

cos(?) — sin(?) 4.1)
cos(t) + sin(¢)

where t€[0; a].

Question 1

The corresponding Jacobian is
> Jacobian:=simplify (sqrt (prik (diff (r(t),t),diff(r(t),t))))

Jacobian ==\ ¢ >+ 2 4.1.1)

which means thatm =2 and n = 2.

Question 2
Since K is a flow curve for the vector field V, then we have the relationship V(r(f)) = r’(¢) for all1€[0;
a]. From this it follows that

a a

Tan(V,K)ZJ Ve eduZJaV(r(t)) . r/(t)dtZJ r'(t) - r’(t)dIZJ (Jacobian(t))2 dr .

K 0 0 0



Question 3
Leta =5, and then we can calculate
> Tan:=Int(Jacobian”2,t=0..5)=int (Jacobian”2,t=0..5)

-5 —10
; 21
Tan :=‘ (e +2)di=" — =
-0

5 : @4.3.1)

> curve:=spacecurve (r(t) ,t=0..5,color=red,axes=normal) :
pnt:=pointplot3d([[1,1,1],[vop(r(5))]],symbol=solidcircle,
symbolsize=15) :

> display (curve,pnt, tickmarks=[3,3,3],scaling=constrained,
orientation=[-65,80,0]) ;




