THE TECHNICAL UNIVERSITY OF DENMARK

Written 2-hour test in the Spring syllabus, May 11 2022.

Course title: Advanced Engineering Mathematics 1. Course no.: 01006

Permitted aids: You may bring and use all aids permitted by DTU.

Weight: The four problems weigh equally.

All answers must be well-reasoned, and relevant calculations must be shown to an appropriate extent. No communication with others during the test is allowed, either directly or electronically.

PROBLEM 1

For a function $f : \mathbb{R}^2 \to \mathbb{R}$ the two 1st-order partial derivatives are given:

f ′ $f'_x(x, y) = 6x - 6y$ and f'_y $y'_{y}(x, y) = 6y^{2} - 6x$.

- 1. Determine all stationary points for *f* .
- 2. Determine the 2nd-order partial derivatives of *f* and set up the Hessian matrix of *f* . Determine the points in the (x, y) plane at which f has local maxima or local minima.
- 3. It is now given that $f(0,0) = 1$. Determine the approximating 2nd-degree polynomial for f with expansion point $(0,0)$.

PROBLEM 2

A rectangle M_1 is located in the (x, y) plane in (x, y, z) space and is given by:

$$
M_1 = \{ (x, y) | 0 \le x \le 2, \ 0 \le y \le 1 \}.
$$

We consider a function $h : \mathbb{R}^2 \to \mathbb{R}$ given by the expression $h(x, y) = 2x - y + 1$. Let G_1 denote the part of the graph of *h* that is located vertically above M_1 .

1. Compute the area of *G*¹ .

The straight line segment between the points $(0,1)$ and $(2,0)$ divides M_1 in two parts. Let M_2 denote the lower part, and let G_2 denote the part of the graph of h that is located vertically above $M₂$.

- 2. Provide a parametric representation of *G*² , and determine its Jacobian function.
- 3. Compute the surface integral of f over G_2 when f is given by the expression

$$
f(x, y, z) = x + y + z - 1, (x, y, z) \in \mathbb{R}^3.
$$

PROBLEM 3

A solid body L in (x, y, z) space is given by the parametric representation

$$
\mathbf{r}(u,v,w) = \left(v \cdot u^2 \cdot \cos(w), v \cdot u^2 \cdot \sin(w), u\right), u \in [0,1], v \in [0,1], w \in \left[0, \frac{\pi}{2}\right].
$$

- 1. Determine the Jacobian function of r .
- 2. We consider the vector field $\mathbf{V}(x, y, z) = (x + e^{y \cdot z}, 2y e^{x \cdot z}, 3z + e^{x \cdot y})$. Compute the flux of V out through the surface ∂*L* of *L*.
- 3. *L* is formed by rotating a profile area *F* in the (x, z) plane (marked yellow on the figure) a quarter of a full rotation about the *z* axis counterclockwise as seen from the positive end of the *z* axis. Provide a parametric representation of *F* .

PROBLEM 4

Let *a* be a positive real number. A flow curve *K* of a smooth vector field **V** in (x, y, z) space (whose expression is not given) is given by the parametric representation

$$
\mathbf{r}(t) = \begin{bmatrix} e^{-t} \\ \cos(t) - \sin(t) \\ \cos(t) + \sin(t) \end{bmatrix}, t \in [0, a].
$$

1. The Jacobian function of $\mathbf r$ can be written in the form

$$
Jacobian(t) = \sqrt{e^{-m \cdot t} + n},
$$

where *m* and *n* are real numbers. Determine *m* and *n*.

2. Justify that the tangential line integral of V along *K* can be computed as

$$
\int_K \mathbf{V} \cdot \mathbf{e} d\mu = \int_0^a \mathbf{r}'(t) \cdot \mathbf{r}'(t) dt = \int_0^a \big(\operatorname{Jacobian}(t) \big)^2 dt.
$$

3. Let $a = 5$ and compute $\overline{}$ *K* $\mathbf{V} \cdot \mathbf{e} \, \mathrm{d} \mu$.