TEChNical University of DEnmark

Written 2-hours exam in the fall curriculum December 7, 2020: Essay Assignment. Course Name: Advanced Engineering Mathematics 1.

Course no. 01006
Allowed helping aids: All helping aids allowed by DTU can be used. For other rules, please refer to the document 'Syllabus \& Rules' on the course homepage

Problem 1, variant. Asked and answered in Maple TA

Let a and b be real constants. An inhomogeneous system of linear equations has the augmented matrix \mathbf{T} given by

$$
\mathbf{T}=\left[\begin{array}{cccc}
1 & -3 & 5 & 5 \\
0 & a-1 & 2 & 5 \\
0 & 0 & a+1 & b \\
0 & 0 & 0 & a^{2}-1
\end{array}\right]
$$

1. Determine for $a=-1$ and $b=0$ one of the solutions \mathbf{x}_{0} to the system of equations.
2. The values of the constants are unchanged $a=-1$ and $b=0$. State a vector \mathbf{w} that spans the solution space for the corresponding homogeneous system of equations.
3. Suppose $a=1$. For which value of b does the system of equations have solutions?
4. We consider now the system of equations with the values for a and b as in the previous question. The vectors $(\alpha, 0, \beta)$ and $(\gamma, 1, \delta)$ are solutions to the inhomogeneous system. State the values of α, β, γ and δ.
5. Examine whether there are values of a and b for which the system of equations has exactly one solution.

Problem 2, variant. Asked and answered in Maple TA

A first-order inhomogeneous linear differential equation is given by:

$$
x^{\prime}(t)+3 x(t)=\mathrm{e}^{3 t} \cos (t) .
$$

1. It is stated that the differential equation has a particular solution of the form

$$
x_{p}(t)=a \cdot \mathrm{e}^{3 t} \cos (t)+b \cdot \mathrm{e}^{3 t} \sin (t) \text { where } a, b \in \mathbb{R} .
$$

Determine a and b.
2. Determine a solution $x_{h}(t)$ to the corresponding homogeneous differential equation. We further stipulate that $x_{h}(t)$ must not be the zero solution.
3. From the previous questions we have $x_{h}(t)$ and $x_{p}(t)$. Which of the following three functions is a solution to the inhomogeneous differential equation

$$
4 \cdot x_{h}(t)+x_{p}(t), x_{h}(t), x_{h}(t)+3 \cdot x_{p}(t)
$$

4. Justify your answers to the previous question using the structural theorem.

Regarding a homogeneous second-order linear differential equation, it is stated that its complete solution is given by:

$$
x(t)=k_{1} \cdot \mathrm{e}^{-5 t} \cos (3 t)+k_{2} \cdot \mathrm{e}^{-5 t} \sin (3 t)(*) .
$$

5. Determine one of the roots λ in the characteristic equations corresponding to the differential equation.
6. Determine k_{1} and k_{2} so that the solution to $(*)$ fulfills $x(0)=4$ and $x^{\prime}(0)=5$.

Problem 3. Essay Assignment. Answer is uploaded in pdf.

A subspace $U \mathrm{i} \mathbb{R}^{3}$ is spanned by the vectors $\mathbf{u}_{1}=(1,0,1)$ and $\mathbf{u}_{2}=(1,1,1)$. It is also stated that U is the kernel for a linear map $f: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$.

1. Explain that $\operatorname{dim}(U)=2$, and determine an orthonormal basis $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ for U.
2. Explain that the number 0 is an eigenvalue for f, and determine $f\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)$ and $f\left(2 \mathbf{v}_{1}-\mathbf{v}_{2}\right)$.
3. It is now further stated that f has the eigenvalue 4 and that E_{4} is the orthogonal complement to U. Determine a diagonal matrix Λ and an orthogonal matrix \mathbf{Q} so that

$$
{ }_{\mathrm{e}} \mathbf{F}_{\mathrm{e}}=\mathbf{Q} \Lambda \mathbf{Q}^{\mathrm{T}}
$$

where ${ }_{\mathrm{e}} \mathbf{F}_{\mathrm{e}}$ denote the mapping matrix for f with respect to the standard base for \mathbb{R}^{3}.
4. Determine the mapping matrix ${ }_{\mathrm{e}} \mathbf{G}_{\mathrm{e}}$ for another linear map $g: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ which also has U as the kernel, and which fulfills that $(1,2,3) \in g\left(\mathbb{R}^{3}\right)$.

