Math 1. Two-hours Exam December 9, 2018.

JE/JKL 8.12.18

Problem 1

> restart:

A circle C in the complex number plane is given by the equation $|z - 5| = 5$. I.e. C is the circle with center (5, 0) and radius 5.

Question 2

> z2:=5*sqrt(3)*exp(I*Pi/6);

(1.2.1) $z^2 \coloneqq 5\sqrt{3} \left(\frac{\sqrt{3}}{2} \right)$ 2 I 2

> evalc(z2);

$$
\frac{15}{2} + \frac{51\sqrt{3}}{2}
$$
 (1.2.2)

$$
\frac{1}{z_2} = \frac{\overline{z_2}}{z_2 \overline{z_2}} = \frac{1}{10} - \frac{\sqrt{3} i}{30}.
$$

This shows that Re(

$$
\frac{1}{z_2}\,\bigl)=\,\frac{1}{10}\,\,.
$$

> evalc(1/z2); Using Maple we get directly

$$
\frac{1}{10} - \frac{1\sqrt{3}}{30}
$$
 (1.2.3)

> Re(1/z2); Or even more directly

$$
\frac{1}{10} \tag{1.2.4}
$$

Question 3

> assume(x,real):assume(y,real);interface(showassumed=0):

> z:=x+I*y;

$$
z := x + I y \tag{1.3.1}
$$

> Re(1/z);

$$
\frac{x}{x^2 + y^2} \tag{1.3.2}
$$

$$
\text{Re}(\frac{1}{z}) = \frac{x}{x^2 + y^2} = \frac{1}{10} \Leftrightarrow x^2 + y^2 = 10 \text{ s} \Leftrightarrow x^2 + y^2 - 10 \text{ s} = 0 \Leftrightarrow (x - 5)^2 + y^2 = 25 \Leftrightarrow |x - 5 + iy| = 5 \Leftrightarrow |x + iy - 5| = 5 \Leftrightarrow |z - 5| = 5.
$$
\n
$$
\text{This shows that every number } z \text{ that fulfill } \text{Re}(\frac{1}{z}) = \frac{1}{10} \text{ lies on C.}
$$
\n
$$
\text{In particular, it follows from the equation 2 that } z_2 \text{ lies on C.}
$$

Problem 2

> restart;with(LinearAlgebra):

The augmented matrix $T = [A \mid b]$ for an inhomogeneous linear system of equation has the totally reduced form

> trap(T):=<<1,0,0,0>|<0,1,0,0>|<-4,0,0,0>|<0,0,1,0>|<-2,1,3,0>|<1, 0,-5,0>>;

$$
trap(T) := \begin{bmatrix} 1 & 0 & -4 & 0 & -2 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 3 & -5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$
 (2.1)

Question 1

The completely reduced linear system of equations is then

$$
x_1 - 4x_3 - 2x_5 = 1
$$

\n
$$
x_2 + x_5 = 0 \Leftrightarrow x_2 = -x_5
$$

\n
$$
x_4 + 3x_5 = -5
$$

\n
$$
x_1 = 1 + 4x_3 + 2x_5
$$

\n
$$
x_2 = -x_5
$$

\n
$$
x_4 = -5 - 3x_5
$$

If we put $x_3 = t_1$ and $x_5 = t_2$ then the complete solution in standard parameter form is $(x_1, x_2, x_3, x_4, x_5) = (1, 0, 0, -5, 0) + t_1(4, 0, 1, 0, 0) + t_2(2, -1, 0, -3, 1)$, $t_1, t_2 \in \mathbb{R}$. Using Maple we get

> LinearSolve(trap(T),free=t);

$$
\begin{array}{c}\n1 + 4 \, t_3 + 2 \, t_5 \\
-t_5 \\
t_3 \\
-5 - 3 \, t_5 \\
t_5\n\end{array}
$$
\n(2.1.1)

If we put $t_3 = t_1$ and $t_5 = t_2$ we find again

 $(x_1, x_2, x_3, x_4, x_5) = (1, 0, 0, -5, 0) + t_1(4, 0, 1, 0, 0) + t_2(2, -1, 0, -3, 1)$, $t_1, t_2 \in \mathbb{R}$. $f: \mathbb{R}^5 \to \mathbb{R}^4$ is linear and given by the fact that $_{\rho} \mathbf{F}_{\rho} = \mathbf{A}$.

Question 2

From question 1 we get. $\mathbf{x} \in \text{ker}(f) \Leftrightarrow f(\mathbf{x}) = \mathbf{0} \Leftrightarrow \mathbf{F}_{e} \mathbf{F}_{e} \mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t_1(4, 0, 1, 0, 0) + t_2(2, -1, 0, -3, 1),$ $t_1, t_2 \in \mathbb{R}$. I.e. $\text{ker}(f) = \text{span}\{(4, 0, 1, 0, 0), (2, -1, 0, -3, 1)\}$, where the two vectors are linearly independent. From this it follows that $\dim(\ker(f)) = 2$. $\dim(f(\mathbb{R}^5)) = \dim(\mathbb{R}^5) - \dim(\ker(f)) = 5-2 = 3.$ Or more easily: $\dim(f(\mathbb{R}^5)) = \rho(\mathbb{R}^5) = \rho(A) = 3$, which can be read from 5 first columns in trap(**T**). $dim(ker(f)) = dim(\mathbb{R}^5) - dim(f(\mathbb{R}^5)) = 5-3 = 2.$

Problem 3

```
> 
prik:=(x,y)->VectorCalculus[DotProduct](x,y):
> 
restart;with(LinearAlgebra):
 kryds:=(x,y)->convert(VectorCalculus[CrossProduct](x,y),Vector):
```
 \mathbb{R}^3 equipped with the usual dot product.

> v1:=<1,1,1>;

$$
vI := \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$
 (3.1)

> v2:=<1,0,-1>;

$$
v2 := \left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right]
$$
 (3.2)

> v3:=<-1,1,0>;

$$
v3 := \left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right]
$$
 (3.3)

Question 1

> eV:=<v1|v2|v3>; The coordinate matrix for the vectors **v**1, **v**2 and **v**3 with respect to the standard basis *e* is

$$
eV := \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}
$$
 (3.1.1)

Since

```
> 
rho('eV')=Rank(eV);
```

$$
\rho\left(eV\right) = 3\tag{3.1.2}
$$

v1, **v**2 and **v**3 are three linearly independent vectors in \mathbb{R}^3 and thus $v = (v_1, v_2, v_3)$ is a basis for \mathbb{R}^3 .

 $f: \mathbb{R}^3 \to \mathbb{R}^3$ is linear and given by the fact that for every vector $\mathbf{u} \in \text{span}\{\mathbf{v}\}\$ it applies that $f(\mathbf{u}) = 5\mathbf{u}$ and for every vector $\mathbf{u} \in \text{span}\{\mathbf{v2}, \mathbf{v3}\}\)$ it applies that $f(\mathbf{u}) = -4\mathbf{u}$.

Question 2

> vFv:=DiagonalMatrix(<5,-4,-4>); (3.2.1) The given properties of *f* shows that 5 is an eigenvalue for *f* with corresponding eigenvector-space E_5 = span{**v**1} and that −4 is an eigenvalue for *f* with corresponding eigenvector-space E_{-4} = span{**v**2, **v**3}. Thus $v = (v1, v2, v3)$ is a basis for \mathbb{R}^3 consisting of eigenvectors for *f*. Since $f(v1) = 5v1 = 5v1 + 0v2 + 0v3$, $f(v2) = -4v2 = 0v1 - 4v2 + 0v3$ and $f(v3) = -4v3 = 0v1 + 0v2 - 4v3$, then *vFv* 5 0 0 $0 -4 0$ $0 \t 0 \t -4$

> eMv:=eV; The change of base matrix, that changes from *v*-coordinates to standard *e*-coordinates, is

$$
eMv := \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}
$$
 (3.2.2)

> vMe:=eMv^(-1);and the change of base matrix that changes from standard *e*-coordinates to coordinates, is

$$
vMe := \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}
$$
(3.2.3)

> eFe:=eMv.vFv.vMe; We then have

$$
eFe := \left[\begin{array}{cccc} -1 & 3 & 3 \\ 3 & -1 & 3 \\ 3 & 3 & -1 \end{array}\right]
$$
 (3.2.4)

which is seen to be symmetric.

Question 3

Since ${}_{e}F_{e}$ is symmetric, then the two eigenvector-spaces E_{5} and E_{-4} are orthogonal, which is also seen directly.

```
> 
q1:=v1/sqrt(prik(v1,v1));
```

$$
qI := \begin{bmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{bmatrix}
$$
 (3.3.1)

is an orthonormal basis for E_5 .

> q2:=v3/sqrt(prik(v3,v3));

$$
q2 := \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}
$$
 (3.3.2)

> q3:=kryds(q1,q2);and

$$
q3 := \begin{bmatrix} -\frac{\sqrt{3}\sqrt{2}}{6} \\ -\frac{\sqrt{3}\sqrt{2}}{6} \\ \frac{\sqrt{3}\sqrt{2}}{3} \end{bmatrix}
$$
 (3.3.3)

constitute an orthonormal basis for E_{-4} .

 (q_1, q_2, q_3) is then an orthonormal basis for \mathbb{R}^3 equipped with the ususal dot product consisting of eigenvectors for *f* , where the basis vector **q**2 is aligned with **v**3.

Problem 4

> restart;with(LinearAlgebra):

Given

$$
\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} a & 3-a \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, t \in \mathbb{R},
$$

where *a* is an arbitrary real number.

> A:=<<a,1>|<3-a,3>>; The system matrix is

$$
A := \left[\begin{array}{cc} a & 3 - a \\ 1 & 3 \end{array} \right] \tag{4.1}
$$

Question 1

> a:=3:

The system matrix is in this case

> A;

(4.1.1) 3 0 1 3

> g:=(x,y)->evalb(x[1]<y[1]): (4.1.2) > sort(Eigenvectors(A,output=list),g); $3, 2, 2, 0$ 1

From this it is read that the only eigenvalue for the system matrix **A** is 3 with am(3) = 2 and gm(3) $= 1.$

Since $\text{gm}(3) \leq \text{am}(3)$ the system matrix **A** cannot be diagonalized (**A** does not have two linearly independent eigenvectors) and thus the system of equations cannot be solved by the diagonalization method.

Question 2

> a:='a':

> A;

$$
\left[\begin{array}{cc} a & 3-a \\ 1 & 3 \end{array}\right]
$$
 (4.2.1)

Since

x 1 *t x* 2 *t* $= e^{(4 + i)t} \begin{vmatrix} 1 + i \\ i \end{vmatrix}$ 1 is a particular solution to the system of differential equations,

we have

$$
(4+i)e^{(4+i)t}\begin{bmatrix}1+i\\1\end{bmatrix} = A e^{(4+i)t}\begin{bmatrix}1+i\\1\end{bmatrix} \Leftrightarrow (4+i)\begin{bmatrix}1+i\\1\end{bmatrix} = A \begin{bmatrix}1+i\\1\end{bmatrix}.
$$

From this it is read that λ 1 = 4 + *i* is an eigenvalue for **A** and that **v**1 = 1 is a corresponding eigenvector for **A**. Since **A** is a real 2×2- matrix, then λ 2 = $\overline{\lambda}$ 1 = (4– *i*) the other eigenvalue for **A** and $v2 = v1$ = $1 - i$ ¹ is a corresponding eigenvector for **A**.

Since **v**1 and **v**2 are two linearly independent eigenvectors for **A (** the corresponding eigenvalues are different), then the complete complex solution to the system of differential equations

$$
\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = c1 e^{(4+i)t} \begin{bmatrix} 1+i \\ 1 \end{bmatrix} + c2 e^{(4-i)t} \begin{bmatrix} 1-i \\ 1 \end{bmatrix}, t \in \mathbb{R}, c1, c2 \in \mathbb{C}.
$$

Question 3

Since $4 + i$ is an eigenvalue for the system matrix **A**, then $4 + i$ is root in the characteristic polynomial for **A**, which is

```
> 
P:=lambda->Determinant(A-lambda*IdentityMatrix(2)):
> 
simplify(P(lambda));
                         2
                        \lambda
```

$$
\mu^2 + (-a - 3) \lambda + 4 a - 3 \tag{4.3.1}
$$

 $> P(4+I);$

$$
5 I - I a \tag{4.3.2}
$$

From this it is seen that $P(4 + i) = 0 \Leftrightarrow a = 5$.

Thus. The value of *a*, that has been used in Question 2, is $a = 5$.