Advanced Engineering Mathematics 1. 2-hours exam December 5, 2016.

JE/JKL 05.12.16

Problem 1

> restart;with(LinearAlgebra):

An inhomogeneous system of linear equations consisting of three equations in four unknowns x_1, x_2, x_3 og x_4 has the augmented matrix **T** = [**A**| **b**] given by

> T(a); > T:=a-><<1,0,0>|<0,a,0>|<1,-2,1-a^2>|<3,-4,0>|<0,2,1-a>>: 1 0 1 3 0

where $a \in \mathbb{R}$.

Question 1

For $a = -1$ the augmented matrix is

 $> T(-1);$

The system of equations has no solutions, since $\rho(A(-1)) = 2 < 3 = \rho(T(-1))$. Or. The equations corresponding to the last row in **T** has no solutions. Therefore the system of equations has no solutions.

With Maple

> LinearSolve(T(-1)); Error, (in LinearAlgebra:-LinearSolve) inconsistent system For $a = 0$ the augmented matrix is

> T(0);

$$
\left[\begin{array}{rrrrr} 1 & 0 & 1 & 3 & 0 \\ 0 & 0 & -2 & -4 & 2 \\ 0 & 0 & 1 & 0 & 1 \end{array}\right]
$$

that has the totally reduced form

> trap('T(0)')=ReducedRowEchelonForm(T(0));

Since the coefficient matrix and the augmented matrix both have the rank $\rho = 3$ and since $n - \rho = 4 - 3 = 1$ there are infinitely many solutions characterized by a single free parameter. Putting $x_2 = t$ it is readily seen that

> x=LinearSolve(T(0),free=t); $(x_1, x_2, x_3, x_4) = (2, 0, 1, -1) + t(0, 1, 0, 0)$, $t \in \mathbb{R}$. With Maple one gets

$$
x = \begin{bmatrix} 2 \\ t_2 \\ 1 \\ -1 \end{bmatrix}
$$

> T(1); For $a = 1$ the augmented matrix is

$$
\begin{bmatrix} 1 & 0 & 1 & 3 & 0 \\ 0 & 1 & -2 & -4 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

that already is in its totally reduced form.

Since the coefficient matrix and the augmented matrix both have the rank $\rho = 2$ and since *n* $-p = 4 - 2 = 2$ there are infinitely many solutions characterized by two free parameters. Putting $x_3 = t_1$ and $x_4 = t_2$ it is readily seen that

 $(x_1, x_2, x_3, x_4) = (0, 2, 0, 0) + t_1(-1, 2, 1, 0) + t_2(-3, 4, 0, 1), t_1, t_2 \in \mathbb{R}$

With Maple one gets

> x=LinearSolve(T(1),free=t);

$$
x = \begin{bmatrix} -t_3 - 3 \ t_4 \\ 2 + 2 \ t_3 + 4 \ t_4 \\ t_3 \\ t_4 \end{bmatrix}
$$

V Ouestion 2

The coefficient matrix is

> A:=SubMatrix(T(a), 1...3, 1...4);

$$
A := \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & a & -2 & -4 \\ 0 & 0 & -a^2 + 1 & 0 \end{bmatrix}
$$

and the right-hand-side is

> b:=SubMatrix(T(a),1..3,5..5); *b* 0 2 $1 - a$

> x0:=<1,0,-1,0>; $\mathbf{x}_0 = (x_1, x_2, x_3, x_4) = (1, 0, -1, 0)$ is a solution $\Leftrightarrow \mathbf{A}\mathbf{x}_0 = \mathbf{b}$.

$$
x0 := \left[\begin{array}{c}1\\0\\-1\\0\end{array}\right]
$$

> A.x0=b;

$$
\begin{bmatrix} 0 \\ 2 \\ a^2 - 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 - a \end{bmatrix}
$$

From this it is seen that $\mathbf{A}\mathbf{x}_0 = \mathbf{b} \Leftrightarrow a^2 - 1 = 1 - a \Leftrightarrow a^2 + a - 2 = 0 \Leftrightarrow a = 1 \text{ or } a = -2.$ So $(x_1, x_2, x_3, x_4) = (1, 0, -1, 0)$ is a solution to the system of equations $\Leftrightarrow a = 1$ or $a = -2$.

Problem 2

> restart;with(LinearAlgebra):

In \mathbb{R}^3 the vectors $\mathbf{v}1 = (-1, 1, 0)$, $\mathbf{v}2 = (1, -2, 1)$, $\mathbf{v}3 = (1, -4, 0)$ and $\mathbf{u} = 2 \mathbf{v}1 - \mathbf{v}2$ are given.

▼ **Question 1**

> eV:=<<-1,1,0>|<1,-2,1>|<1,-4,0>>; The coordinate matrix for the vectors **v**1, **v**2 og **v**3 with respect to the standardbasis *e* is

Since

```
> 
rho('eV')=Rank(eV);
```

$$
\rho\left(eV\right)=3
$$

v1, **v**2 og **v**3 are three linearly independent vectors in \mathbb{R}^3 and thus $v = (v_1, v_2, v_3)$ is a basis for \mathbb{R}^3 .

> eMv:=eV; The change of basis matrix that changes from *v*-coordinates to standard *e*-coordinates is

$$
eMv := \left[\begin{array}{rrr} -1 & 1 & 1 \\ 1 & -2 & -4 \\ 0 & 1 & 0 \end{array}\right]
$$

 $>$ **vMe:=eMv^(-1);** and the change of basis matrix that changes from standard *e*-coordinates to *v*-coordinates are

$$
vMe := \begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 1 \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}
$$

Question 2

> vu:=<2,-1,0>; The coordinate vector for $\mathbf{u} = 2\mathbf{v}1 - \mathbf{v}2$ with respect to basis *v* is

$$
vu := \left[\begin{array}{c}2\\-1\\0\end{array}\right]
$$

> eu:=eMv.vu; The coordinate vector for **u** with respect tot the standard basis *e* is

$$
eu := \left[\begin{array}{c} -3 \\ 4 \\ -1 \end{array}\right]
$$

This could also have been achieved by

```
> 
eu:=2*<-1,1,0>-<1,-2,1>;
```

$$
eu := \left[\begin{array}{c} -3 \\ 4 \\ -1 \end{array}\right]
$$

 $f: \mathbb{R}^3 \to \mathbb{R}^3$ is linear and it applies that $f(\mathbf{v}1) = 3\mathbf{v}1$, $f(\mathbf{v}2) = 3\mathbf{v}2$ and $f(\mathbf{v}3) = \mathbf{0}$.

Question 3

Since the three vectors are proper vectors, it follows that **v**1 and **v**2 are eigenvectors for *f* corresponding to the eigenvalue 3 and that **v**3 is an eigenvector for *f* corresponding to the eigenvalue 0.

Thus $v = (v1, v2, v3)$ is a basis for \mathbb{R}^3 consisting of eigenvectors for *f*.

V Ouestion 4

Since $f(v1) = 3v1 = 3 v1 + 0 v2 + 0 v3$, $f(v2) = 3v2 = 0 v1 + 3 v2 + 0 v3$ and $f(v3) = 0 = 0$ $0 \text{ v1} + 0 \text{ v2} + 0 \text{ v3}$ then

> vFv:=DiagonalMatrix(<3,3,0>);

> eFe:=eMv.vFv.vMe;

$$
vFv := \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

$$
eFe := \begin{bmatrix} 4 & 1 & 1 \\ -4 & -1 & -4 \\ 0 & 0 & 3 \end{bmatrix}
$$

Question 5

Since both **v**1 and **v**2 belongs to the eigenvectorspace E_3 (they span E_3), then also the linear combination $\mathbf{u} = 2 \mathbf{v} \mathbf{1} - \mathbf{v} \mathbf{2}$ belongs to E_3 .

Therefore **u** is an eigenvector for *f* corresponding to the eigenvalue 3.

> eFe.eu=3*eu; Check

$$
\begin{bmatrix} -9 \\ 12 \\ -3 \end{bmatrix} = \begin{bmatrix} -9 \\ 12 \\ -3 \end{bmatrix}
$$

Exercise 3

> restart;with(LinearAlgebra): > f:=x->diff(x,t)-t*x: > 'f(x(t))'=f(x(t)); $f: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ linear and given by

$$
f(x(t)) = \frac{\mathrm{d}}{\mathrm{d}t} x(t) - tx(t)
$$

Question 1

> f(x(t))=0;

$$
\frac{\mathrm{d}}{\mathrm{d}t}\,x(t)-tx(t)=0
$$

Since

> Int(-t,t)=int(-t,t);

$$
\int (-t) dt = -\frac{1}{2} t^2
$$

> x(t)=c*exp(1/2*t^2); all solutions are

$$
x(t) = c e^{\frac{1}{2}t^2}
$$

> dsolve(f(x(t))=0,x(t)); where $t \in \mathbb{R}$ and $c \in \mathbb{R}$. Direct with Maple one gets

$$
x(t) = C I e^{\frac{1}{2}t^2}
$$

 $-t$

 $t^2 + 1$

 $P_2(\mathbb{R})$ with the monomial basis $m = (1, t, t^2)$ and $P_3(\mathbb{R})$ with the monomial basis *m* $= (1, t, t^2, t^3).$ We now restrict *f* to be a map of $P_2(\mathbb{R})$ into $C^{\infty}(\mathbb{R})$.

Question 2

> f(1); The images of the basis vectors are

- **> f(t);**
- $> f(t^2)$;

 $t^3 + 2 t$

Since $f(1)$, $f(t)$ and $f(t^2)$ all belong to $P_3(\mathbb{R})$, then the image space $f(P_2(\mathbb{R}))$ - that is spanned by these three images - ia a subspace of $P_3(\mathbb{R})$.

Inspired by question 2, we finally let *f* be a map of $P_2(\mathbb{R})$ into $P_3(\mathbb{R})$.

Question 3

> Since $f(1) = -t$, $f(t) = 1 - t^2$ and $f(t^2) = 2t - t^3$ according to question 2, then we see that **mFm:=<<0,-1,0,0>|<1,0,-1,0>|<0,2,0,-1>>;** 0 1 0

> LinearSolve(<mFm|<0,0,0,0>>); $P(t) \in \text{ker}(f) \Leftrightarrow f(P(t)) = 0 \cdot 1 + 0 \cdot t + 0 \cdot t^2 + 0 \cdot t^3 \Leftrightarrow \text{mFm m}P(t) = 0 \in \mathbb{R}^4$. 0

I.e. ker(*f*) only consists of the zero-polynomial $0I+0$ *t*+0 t^2 in $P_2(\mathbb{R})$.

From the dimensional theorem it then follows that $\dim(f(P_2(\mathbb{R}))) = \dim(P_2(\mathbb{R})) - \dim(\ker(f)) =$ $3-0 = 3$.

 $\boldsymbol{0}$

 $\boldsymbol{0}$

 $(Or \dim(f(P_2(\mathbb{R}))) = \rho(mFm) = 3)$

Comparison with exercise 1: The difference follows from the fact that the only function of the form $c \exp(\frac{1}{2})$ $\frac{1}{2}$ t^2), that belongs to our domain $P_2(\mathbb{R})$, is the one that corresponds to $c = 0$.

Problem 4

> restart;with(LinearAlgebra):with(plots):

$$
\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, t \in \mathbb{R}.
$$

> v1:=<1+I,2>; where **A** is a real 2×2 -matrix. It is further given that **A** has the eigenvector

corresponding to the eigenvalue

> lambda1:=-1+2*I;

$$
\lambda I := -1 + 2 I
$$

Question 1

> lambda2:=conjugate(lambda1); Since **A** is a real 2×2 -matrix then the other eigenvalue for **A** is the conjugate of λ 1

$$
\lambda 2 := -1 - 2 I
$$

> v2:=evalc(conjugate(v1)); and a corresponding eigenvector for **A** is the conjugate of **v**1

$$
v2 := \left[\begin{array}{c} 1 - I \\ 2 \end{array} \right]
$$

Since **v**1 and **v**2 are two linearly independent eigenvectors for **A** the complete complex solution the system of differential equations is

$$
\mathbf{x}(t) = cI \ e^{(-1 + 2i)t} \ \mathbf{v} \mathbf{1} + c2 \ e^{(-1 - 2i)t} \ \mathbf{v} \mathbf{2} \ , \ t \in \mathbb{R} \ , \ cI, c2 \in \mathbb{C}.
$$

Written in Maple

```
> 
x:=unapply(c1*exp(lambda1*t)*v1+c2*exp(lambda2*t)*v2,t):
> 
'x(t)'=x(t);
                      x(t) = \begin{cases} (1+I) cI e^{(-1+2I)t} + (1-I) c2 e^{(-1-2I)t} \end{cases}2 \text{ } cl \text{ } e^{(-1 + 2 \text{ I})t} + 2 \text{ } c2 \text{ } e^{(-1 - 2 \text{ I})t}
```
Note that **x**(*t*) is real, if and only if it is equal to its conjugate which is the case if and only if *c1* and *c2* are mutually conjugates.

▼ **Question 2**

From the figure it is seen that $\mathbf{x}(0) = (x_1(0), x_2(0)) = (-1, 4)$.

 $> x(0) = < -1, 4>;$ For the determination of the constants *c1* and *c2* we have the linear system of equations

$$
\begin{bmatrix} (1+I) cI + (1-I) c2 \\ 2 cI + 2 c2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}
$$

with the correpsonding augmented matrix

> T:=<1+1,2>
$$
|
$$
 $-1,2> $|$ $-1,4>>$;

$$
T := \begin{bmatrix} 1+I & 1-I & -1 \\ 2 & 2 & 4 \end{bmatrix}
$$$

that has the totally reduced form

> trap('T'):=ReducedRowEchelonForm(T);

$$
trap(T) := \begin{bmatrix} 1 & 0 & 1 + \frac{3}{2} & I \\ 0 & 1 & 1 - \frac{3}{2} & I \end{bmatrix}
$$

> c1:=1+3/2*I; From this we see that

$$
cl := 1 + \frac{3}{2} I
$$

> c2:=1-3/2*I;and

$$
c2 := 1 - \frac{3}{2} I
$$

c1 and *c2* are mutually conjugates as expected. Cf. the remark in Question1. The solution which for is then

> 'x(t)'=simplify(evalc(x(t)));

$$
x(t) = \begin{bmatrix} -e^{-t} (\cos(2 t) + 5 \sin(2 t)) \\ 2 e^{-t} (2 \cos(2 t) - 3 \sin(2 t)) \end{bmatrix}
$$

or written out

> 'x[1] (t) '=simplify(evalc(x(t)[1])) ;

$$
x_1(t) = -e^{-t} (\cos(2 t) + 5 \sin(2 t))
$$

> 'x[2] (t) '=simplify(evalc(x(t)[2])) ;

$$
x_2(t) = 2 e^{-t} (2 \cos(2 t) - 3 \sin(2 t))
$$

where $t \in \mathbb{R}$.

```
> 
p1:=plot(x(t)[1],t=0..6,color=red):
```

```
> 
p2:=plot(x(t)[2],t=0..6,color=blue):
> 
display(p1,p2,scaling=constrained,view=-3..5);
```
