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JE 9.5.23 (translated by SHSP)

VY Problem 1

> restart;with (LinearAlgebra) :with (plots) :
A function f: R?> — R is given by the expression:
> fi=(x,y) —>x"2*%y-3*x*2-4*y*248*y+11:
> f(x,y)
Xy—3x —4)y +8y+11 (1.1)

Y Question 1

Vix, ») = (f.6 ), £, 0))=Qxy—6x, ¥ —8y+8)=2x(y—3),x’ —8y+8)=(0,0)
2x(y—3)=0 and X — 8y+8=0e®x=0andy=1lory=3and x=+4.
All stationary points of fare then (0, 1), (4, 3) and (—4, 3).

Y Question 2

Iffhas a local extremum at a point then that point must be a stationary point since / has no

exceptional points.

The Hessian matrix of / at the points (x, y) is

> H(x,y) :=<diff(f(x,y) ,x,x) diff(£f(x,y) ,x,y) ,;diff(£(x,y),y,x),
diff (f(x,y),y,y)>

2y—6 2x 121
H(x, = ous
() 2x -8 (121
> H(0,1) :=subs (x=0,y=1,H(x,y))
—4 0
H(0,1) = . (1.2.2)

> Eigenvalues (H(0,1l) ,output=list)
[—4, —8] (1.2.3)

Since both eigenvalues of H(0, 1) are negative, then f has a proper local maximum at the
stationary point (0, 1).
> H(4,3) :=subs(x=4,y=3,H(x,Vy))

H(4,3) = (1.2.4)

0 8
8 —8
> Eigenvalues (H(4,3) ,output=list)

(1.2.5)



[—4+4J5, —4—4/5] (1.2.5)

Since the two eigenvalues of H(4, 3) have opposite signs, then f has neither local maximum nor
local minimum at the stationary point (4, 3) (saddle point).
> H(-4,3) :=subs (x=-4,y=3,H(x,y))

H(—4,3) = (1.2.6)

> Eigenvalues (H(-4,3) ,output=list)
|—4+4/5, —4—45| 2.7

Since the two eigenvalues of H(—4, 3) have opposite signs, then /" has neither local maximum nor
local minimum at the stationary point ( —4,3) (saddle point).

> contourplot(f(x y) ,x=-6. ,y— 5,contours=40)
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Question 3

1
A parabola with the equation y = sz — 1 along with a straight line with the equation y =3

delimit a bounded and closed set of points M.
> implicitplot({y=1/4*x*2-1,y=3},x=-4..4,y=-1..3,scaling=



constrained)

[N §]

Since M is bounded and closed and since f* is continuous on M, then /" has a global minimum and a
global maximum on M. Since f* does not have any exceptional points in the interior of M, then
these values are found either at the stationary point or within the interior of M or on the boundary
of M.
The only stationary point in the interior of Mis (0, 1) where we have the function value
> '£(0,1) '=£(0,1)

f£(0,1)=15 (1.3.1)

The value of / on the two boundary curves is
> simplify (£ (x,1/4*x*2-1))

—1 (1.3.2)
for allx€[-4; 4] and
> £(x,3)

-1 (1.3.3)
for allxE[-4; 4].
From numerical comparison of these investigations we find that the global maximum is 15, which
is achieved at the point (0, 1), and that the global minimum is —1, which is achieved everywhere
on the boundary of M.
We note that since M is connected, then the image set (the range) is M) = [—1; 15].
> plot3d(f(x,y) ,x=-4..4,y=-1..3)



Y Problem 2
> restart;with(LinearAlgebra) :with (plots):
A region M in the (x, z) plane is given by
1
M={(x2|0 x < AT and sin(x) < z < cos(x) }

> p0:=plot([cos(x),sin(x)],x=0..Pi/4,scaling=constrained,color=
black) :
> pl:=plot([Pi/4,v,v=0..1],linestyle=dash):




> display(p0,pl,tickmarks=[2,3],labels=[x,z],title="M")
M
1 -

z 0.5

Y Question 1

A parametric representation of M'is
> s:=(u,v)-><u,sin(u)+v* (cos(u) -sin(u) ) >:
> s(u,v)

u

. . (2.1.1)
sin(u) + v (cos(u) —sin(u))

where u €[0; % ] and vE€[0; 1] (the vertical line segment from the point (u,sin(«)) to the point (u,

cos(u))).

> M:=<diff(s(u,v),u) |diff(s(u,v),v)>

1 0
) ) \ 2.1.2)
cos(u) + v (—sin(u) —cos(u)) cos(u) — sin(u)

> Js:=Determinant (M)
Js := cos(u) — sin(u) 2.1.3)




which is > 0, since u €[0; % ]. The Jacobian function belonging to s is thus

> Jacobi:=Js

Jacobi := cos(u) — sin(u) 2.14)
T
1.4
Ar(M) = J du= j J Jacobian(,v)dudv
M 070
> integranden:=Jacobi

integranden := cos(u) — sin(u) (2.1.5)

> Int(integranden, [u=0..Pi/4,v=0..1])=int (integranden, [u=0..
Pi/4,v=0..1])

H (cos(u) — sin(u)) dudv=/2 — 1 (2.1.6)
<070

A solid of revolution Q has the parametric representation
> r:=(u,v,w)-><u*cos(w) ,u*sin(w) ,sin(u)+v* (cos(u)-sin(u))>

ri= (u,v,w) = (u-cos(w), u-sin(w), sin(u) + v-(cos(u) — sin(u))) 2.1
> r(u,v,w)
u cos(w)
u sin(w) 2.2)

sin(u) + v (cos(u) — sin(u))

where u € [0; %] ,vE[0; 1] and wE[0; m].

We note that Q has been created by rotation of region M in the (x, z) plane by an angle of w about the z
axis counter-clockwise as seen from the positive end of the z axis.

Y Question 2
> M:=<diff(r(u,v,w),u) |diff(r(u,v,w),v)|diff(r(u,v,w), w)>

cos(w) 0 —usin(w)
M = sin(w) 0 u cos(w) (2.2.1)
cos(u) +v (—sin(u) — cos(u)) cos(u) — sin(u) 0

> Jr:=simplify (Determinant (M))
Jri=—u (cos(u) — sin(u)) 2.2.2)
which is < 0, since u €[0; % ]. The Jacobian function belonging to r is thus

> Jacobi:=-Jr
Jacobi == u (cos(u) — sin(u)) 2.2.3)




T
n.l.4
Vol(Q) = J du = J J j Jacobian(u,v,w)dudvdw

Q 0700
> integranden:=Jacobi
integranden = u (cos(u) — sin(u)) 2.24)

> Int(integranden, [u=0..Pi/4,v=0..1,w=0..Pi])=int (integranden,

[u=0..Pi/4,v=0..1,w=0..Pi])

T

.1 .4
H u(cos(u)—sin(u))dudvdw=(—1+@)n 2.2.5)
207070

VY Problem 3

> restart;with(LinearAlgebra) :with (plots):
> vop:=proc (X) op(convert(X,list)) end proc:

In the (x, y) plane we are given the velocity vector field V(x, y) =

Y Question 1

For determination of the flow curves of V, we have the differential equation system

I [
X' (1) ¥ =) 2 2 | [ x(n)
‘o | 1 I T o |
Y _ 2 11 y
x(0)+ 3(0) >
> A:=<1/2,-1/2;-1/2,1/2>
r 1
2 2
A= 3.1.1
NI -
2 2

> Eigenvectors (A,output=list)

"R

All flow curves of V are thus given by

b

T —




x(t) 1 ~1], |a—¢of
=c, +c, €= ) JIER, ¢, ¢, €ER.
y(t) 1 1 c, +c,e
x(0) 2
For determination of the constants ¢ and Cys then (0) = and we have the linear
y
equation system
x(0) L~ 6 2
= = . From this we find ¢, = 3 and c,=1.
»(0) ¢ +te

The wanted flow curve is thus
> r:=t-><3-exp(t),3+exp(t)>:

> r(t)
3—¢
) 3.1.3)
3+¢
where rER.
The curve thus initiates at the point
> r(0)
2
3.14
4 (3.1.4)
and continues through the point
> r(ln(3))
01
3.1.5)
u
A curve K has the parametric representation s(u) = 21 uelo; 2].

¥ Question 2

For determination of the constants ¢ and c, SO

system

x(0) ) 1 —1 ¢ u
yO) | e+ | |11 o | |

> T:=<1,-1,u;1,1,u*2>

(3.2.1)




> c:=LinearSolve (T)

I, 1
3 u + E u
- 3.2.2
c L, (3.2.2)
U TS u
u
The flow curve r(u, #) that fulfillsr@,0) = | , | thus has the parametric representation
u
> r:=(u,t)-><c[l]-c[2] *exp(t) ,c[1l]+c[2] *exp(t)>:
> r(u,t)
2
wo uw (Lo 1Ny
) + 5 (2 u ) u)e
5 3.2.3)
u + u + L 2 _ l e
2 T2 2% T
Fort=1In(3) and u€[0; 2] we get
> r(u,ln(3))
—u 4+ 2u
5 3.24)
2u"—u

which is a parametric representation of the curve that K has been transformed into at time ¢ = In(3)

> pl:=plot([vop(r(u,1ln(3))) ,u=0..2],scaling=constrained,color=
red) :

> p2:=plot([u,u”2,u=0..2],scaling=constrained,color=blue) :

> p3:=pointplot([[2,4],[0,6]],symbol=solidcircle,color=[blue,
red]) :

> pd4:=plot([3-exp(t), 3+exp(t) ,t=0..1n(3)],linestyle=dot,color=
darkgrey) :

> display(pl,p2,p3,p4,labels=[x,y])



64

2

| This question could of course also have been solved by use of dsolve.

Y Problem 4

> restart:with (plots):
prik:=(x,y) ->VectorCalculus[DotProduct] (x,y) :
kryds:=(x,y) ->convert (VectorCalculus[CrossProduct] (x,y) ,Vector) :
vop:=proc (X) op(convert(X,list)) end proc:
grad:=X->convert (Student[VectorCalculus] [Del] (X) ,Vector) :
div:=V->VectorCalculus|[Divergence] (V) :
rot:=proc(X) uses VectorCalculus;BasisFormat (false) ;Curl(X) end
proc:

> with(LinearAlgebra) :

A vector field V in (x, y, z) space is given by
> Vi=(x,y,2z) ><-y*x,y*2+5,-y*z+5*z>:
> V(x,y,2)

—yx
¥ +5 4.1)
—yz+5z




Regarding the given massive prism P with the corners O, A, B, C, E and F we refer to the figure in
the problem sheet.

Y Question 1

> divV:=div (V) (x,y,z)
divV =5 4.1.1)

> rotV:=unapply (rot (V) (x,y,2z),[x,y,z]):
> rotV(x,y,z)

0 4.1.2)

1 4
Vol(P) = > Vol(box) = 5= 2.

Y Question 2

OP 1is the closed surface of P with an orientation given by an outwards-directed unit normal
vector. From Gauss' Theorem we then get

Flux(V,dP) = J Div(V) du = J 5du=>5 J du = 5Vol(P) = 10.
P P P

Let S denote the side surface of P that has the corners B, C, E and F.

Y Question 3

Since S is the rectangle that has the corners B, C, E and F located within a plane with the equation
z=12-y, then a parametric representation of § is
> r:=(u,v)-><u,v,2-v>:

> r(u,v)
u
v 4.3.1)
2—=v
where u€[0; 1] and vE[0; 2].
> ru:=diff(r(u,v),hu)
1
ru:=1,0 4.3.2)

> rv:=diff(r(u,v),v)




ry = 1 4.3.3)
—1
The normal vector of the surface
> N:=kryds (ru,rv)
0
N:=|1 4.3.4)

perfectly fulfills the right-hand rule with the chosen orientation of the closed boundary curve a5

of S (show with red arrow on the figure in the problem sheet). From Stokes' Theorem we thus get
2.1

Circ(V,dS) = J V- e, di = Flux(Curl(V).5) = j n, - Curl(V)dy = J J N(uy) » Curl(V)(r(u.1)
as

s 070
dudv

The curl computed on the surface
> Rot:=rotV(vop(r(u,v)))

—2+v
Rot = 0 4.3.5)
u
> integranden:=prik (Rot,N)
integranden = u (4.3.6)

> Int(Int(integranden,u=0..1) ,v=0..2)=int(int (integranden,u=0.
.1) ,v=0..2)

2/ 1
[ UO u du] dv=1 4.3.7)
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