01006 Advanced Engineering Mathematics 1 2-hr test May 11 2023

JE 9.5.23 (translated by SHSP)

Problem 1

(1.1) > f:=(x,y)->x^2*y-3*x^2-4*y^2+8*y+11: > restart;with(LinearAlgebra):with(plots): > f(x,y) A function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by the expression: $x^{2}v - 3x^{2} - 4v^{2} + 8v + 11$

Question 1

 $\nabla f(x, y) = (f'(x, y), f'(x, y)) = (2 xy - 6 x, x^2 - 8 y + 8) = (2 x (y - 3), x^2 - 8 y + 8) = (0, 0)$ $2x(y-3) = 0$ and $x^2 - 8y + 8 = 0 \Leftrightarrow x = 0$ and $y = 1$ or $y = 3$ and $x = \pm 4$. All stationary points of *f* are then $(0, 1)$, $(4, 3)$ and $(-4, 3)$.

Question 2

If *f* has a local extremum at a point then that point must be a stationary point since *f* has no exceptional points.

The Hessian matrix of *f* at the points (x, y) is

> H(x,y):=<diff(f(x,y),x,x),diff(f(x,y),x,y);diff(f(x,y),y,x), diff(f(x,y),y,y)>

$$
H(x, y) := \begin{bmatrix} 2y - 6 & 2x \\ 2x & -8 \end{bmatrix}
$$
 (1.2.1)

> H(0,1):=subs(x=0,y=1,H(x,y))

$$
H(0,1) := \begin{bmatrix} -4 & 0 \\ 0 & -8 \end{bmatrix}
$$
 (1.2.2)

> Eigenvalues(H(0,1),output=list) $[-4, -8]$

(1.2.3)

Since both eigenvalues of **H**(0, 1) are negative, then *f* has a proper local maximum at the stationary point (0, 1).

> H(4,3):=subs(x=4,y=3,H(x,y))

$$
H(4,3) := \left[\begin{array}{cc} 0 & 8 \\ 8 & -8 \end{array} \right] \tag{1.2.4}
$$

> Eigenvalues(H(4,3),output=list)

(1.2.5)

$$
[-4 + 4\sqrt{5}, -4 - 4\sqrt{5}]
$$
 (1.2.5)

Since the two eigenvalues of **H**(4, 3) have opposite signs, then *f* has neither local maximum nor local minimum at the stationary point (4, 3) (saddle point).

 $> H(-4, 3) := \text{subs} (x=-4, y=3, H(x, y))$

$$
H(-4,3) := \left[\begin{array}{cc} 0 & -8 \\ -8 & -8 \end{array} \right]
$$
 (1.2.6)

> Eigenvalues(H(-4,3),output=list) $[-4 + 4\sqrt{5}, -4 - 4\sqrt{5}]$

(1.2.7)

Since the two eigenvalues of $H(-4, 3)$ have opposite signs, then f has neither local maximum nor local minimum at the stationary point $(-4, 3)$ (saddle point).

> contourplot(f(x,y),x=-6..6,y=-2..5,contours=40)

Question 3

A parabola with the equation $y = \frac{1}{4}x^2 - 1$ along with a straight line with the equation $y = 3$ delimit a bounded and closed set of points *M*.

> implicitplot({y=1/4*x^2-1,y=3},x=-4..4,y=-1..3,scaling=

constrained)

Since *M* is bounded and closed and since *f* is continuous on *M*, then *f* has a global minimum and a global maximum on *M*. Since *f* does not have any exceptional points in the interior of *M*, then these values are found either at the stationary point or within the interior of *M* or on the boundary of *M*.

> 'f(0,1)'=f(0,1) The only stationary point in the interior of M is $(0, 1)$ where we have the function value

$$
f(0, 1) = 15 \tag{1.3.1}
$$

The value of f on the two boundary curves is

$$
> simplify(f(x,1/4*x^2-1))
$$

 -1

> f(x,3) for all $x \in [-4, 4]$ and

$$
f_{\rm{max}}
$$

(1.3.3)

(1.3.2)

for all $x \in [-4, 4]$.

From numerical comparison of these investigations we find that the global maximum is 15, which is achieved at the point $(0, 1)$, and that the global minimum is -1 , which is achieved everywhere on the boundary of *M*.

 -1

We note that since *M* is connected, then the image set (the range) is $f(M) = [-1, 15]$.

$$
> plot3d(f(x,y),x=-4..4,y=-1..3)
$$

Problem 2

> p0:=plot([cos(x),sin(x)],x=0..Pi/4,scaling=constrained,color= > restart;with(LinearAlgebra):with(plots): > p1:=plot([Pi/4,v,v=0..1],linestyle=dash):A region M in the (x, z) plane is given by $M = \{(x, z) | 0 \quad x \leq \frac{1}{4} \pi \text{ and } \sin(x) \leq z \leq \cos(x) \}$ **black):**

which is ≥ 0 , since $u \in [0; \frac{\pi}{4}]$. The Jacobian function belonging to **s** is thus **> Jacobi:=Js** $Jacobi := \cos(u) - \sin(u)$ **(2.1.4)** $Ar(M) = \int_M d\mu = \int_0^1 \int_0^{\frac{\pi}{4}} Jacobian(u,v)dudv$ **> integranden:=Jacobi** integranden $:= \cos(u) - \sin(u)$ **(2.1.5) > Int(integranden,[u=0..Pi/4,v=0..1])=int(integranden,[u=0.. Pi/4,v=0..1])** $\int_{0}^{1} \int_{0}^{\frac{\pi}{4}} (\cos(u) - \sin(u)) \, du \, dv = \sqrt{2} - 1$ **(2.1.6)** A solid of revolution Ω has the parametric representation **> r:=(u,v,w)-><u*cos(w),u*sin(w),sin(u)+v*(cos(u)-sin(u))>** $r := (u, v, w) \mapsto \langle u \cdot \cos(w), u \cdot \sin(w), \sin(u) + v \cdot (\cos(u) - \sin(u)) \rangle$ **(2.1) > r(u,v,w)**

$$
\begin{aligned}\nu \cos(w) \\
u \sin(w) \\
\sin(u) + v (\cos(u) - \sin(u))\n\end{aligned}
$$
\n(2.2)

where $u \in [0; \frac{\pi}{4}]$, $v \in [0; 1]$ and $w \in [0; \pi]$.

> Jacobi:=-Jr

We note that Ω has been created by rotation of region M in the (x, z) plane by an angle of π about the z axis counter-clockwise as seen from the positive end of the *z* axis.

> Jr:=simplify(Determinant(M)) (2.2.1) (2.2.2) > M:=<diff(r(u,v,w),u)|diff(r(u,v,w),v)|diff(r(u,v,w),w)> Question 2 \leftarrow $-\sin(u) - \cos(u)$ $\cos(u)$ - $J_r := -u \left(\cos(u) - \sin(u)\right)$ which is ≤ 0 , since $u \in [0; \frac{\pi}{4}]$. The Jacobian function belonging to **r** is thus

> **(2.2.3)** $Jacobi := u(\cos(u) - \sin(u))$

$$
Vol(\Omega) = \int_{\Omega} d\mu = \int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\frac{\pi}{4}} Jacobian(u,v,w)dvdw
$$

\n> integration integranden = Jacobi
\nintegranden, [u=0..Pi/4, v=0..1, w=0..Pi]) = int (integranden,
\n[u=0..Pi/4, v=0..1, w=0..Pi])
\n
$$
\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\frac{\pi}{4}} u (\cos(u) - \sin(u)) du dv dw = \left(-1 + \frac{\pi \sqrt{2}}{4}\right) \pi
$$
 (2.2.5)

Problem 3

> restart;with(LinearAlgebra):with(plots):

```
> 
vop:=proc(X) op(convert(X,list)) end proc:
```
In the (x, y) plane we are given the velocity vector field $V(x, y) =$

$$
\left[\begin{array}{c}\frac{1}{2}x-\frac{1}{2}y\\-\frac{1}{2}x+\frac{1}{2}y\end{array}\right].
$$

Question 1

For determination of the flow curves of V , we have the differential equation system

$$
\begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}x(t) - \frac{1}{2}y(t) \\ -\frac{1}{2}x(t) + \frac{1}{2}y(t) \\ -\frac{1}{2}x(t) + \frac{1}{2}y(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, t \in \mathbb{R}.
$$

\n**2** A :=
$$
\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}
$$

\n**3** Eigenvectors (A, output=list)

>

$$
\left[\left[1,1,\left\{\left[\begin{array}{c} -1\\1 \end{array}\right]\right\}\right],\left[0,1,\left\{\left[\begin{array}{c} 1\\1 \end{array}\right]\right\}\right]\right]
$$
(3.1.2)

All flow curves of **V** are thus given by

$$
\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{t} = \begin{bmatrix} c_1 - c_2 e^{t} \\ c_1 + c_2 e^{t} \end{bmatrix}, t \in \mathbb{R}, c_1, c_2 \in \mathbb{R}.
$$

For determination of the constants c_1 and c_2 , then $\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ and we have the linear
equation system

$$
\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} c_1 - c_2 \\ c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}.
$$
 From this we find $c_1 = 3$ and $c_2 = 1$.
The wanted flow curve is thus
 $\mathbf{x} : = t - \times 3 - \exp(t), 3 + \exp(t) > 0$:
 $\mathbf{x} : = t - \times 3 - \exp(t), 3 + \exp(t) > 0$
 $\begin{bmatrix} 3 - e^{t} \\ 3 + e^{t} \end{bmatrix}$ (3.1.3)
where $t \in \mathbb{R}$.
The curve thus initiates at the point
 $\mathbf{x} : t(0)$
 $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ (3.1.4)
and continues through the point
 $\mathbf{x} : t(1n(3))$

$$
\left[\begin{array}{c}0\\6\end{array}\right]
$$
 (3.1.5)

A curve *K* has the parametric representation $\mathbf{s}(u) = \begin{bmatrix} u \\ u^2 \end{bmatrix}$, $u \in [0; 2]$.

Question 2

For determination of the constants c_1 and c_2 so $\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} u \\ u^2 \end{bmatrix}$, we have the linear equation

system

> (3.2.1) $-c_2$ | [1 – with the corresponding augmented matrix **T:=<1,-1,u;1,1,u^2>** -1

> c:=LinearSolve(T)

$$
c := \begin{bmatrix} \frac{1}{2} u^2 + \frac{1}{2} u \\ \frac{1}{2} u^2 - \frac{1}{2} u \end{bmatrix}
$$
 (3.2.2)

The flow curve **r**(*u*, *t*) that fulfills **r**(*u*,0) = $\begin{bmatrix} u \\ u^2 \end{bmatrix}$ thus has the parametric representation

> r:=(u,t)-><c[1]-c[2]*exp(t),c[1]+c[2]*exp(t)>: > r(u,t)

$$
\frac{u^2}{2} + \frac{u}{2} - \left(\frac{1}{2}u^2 - \frac{1}{2}u\right)e^t
$$
\n
$$
\frac{u^2}{2} + \frac{u}{2} + \left(\frac{1}{2}u^2 - \frac{1}{2}u\right)e^t
$$
\n(3.2.3)

> r(u,ln(3)) For $t = \ln(3)$ and $u \in [0, 2]$ we get

.

$$
\begin{bmatrix}\n-u^2 + 2 u \\
2 u^2 - u\n\end{bmatrix}
$$
\n(3.2.4)

which is a parametric representation of the curve that *K* has been transformed into at time $t = \ln(3)$

- **> p1:=plot([vop(r(u,ln(3))),u=0..2],scaling=constrained,color= red):**
- **> p2:=plot([u,u^2,u=0..2],scaling=constrained,color=blue):**
- **> p3:=pointplot([[2,4],[0,6]],symbol=solidcircle,color=[blue, red]):**
- **> p4:=plot([3-exp(t),3+exp(t),t=0..ln(3)],linestyle=dot,color= darkgrey):**
- **> display(p1,p2,p3,p4,labels=[x,y])**

This question could of course also have been solved by use of dsolve.

Problem 4

```
(4.1)
> 
V(x,y,z)
> 
V:=(x,y,z)-><-y*x,y^2+5,-y*z+5*z>:
> 
restart:with(plots):
> 
with(LinearAlgebra):
  prik:=(x,y)->VectorCalculus[DotProduct](x,y):
  kryds:=(x,y)->convert(VectorCalculus[CrossProduct](x,y),Vector):
  vop:=proc(X) op(convert(X,list)) end proc:
  grad:=X->convert(Student[VectorCalculus][Del](X),Vector):
  div:=V->VectorCalculus[Divergence](V):
  rot:=proc(X) uses VectorCalculus;BasisFormat(false);Curl(X) end
  proc:
A vector field V in (x, y, z) space is given by
                                   \overline{\phantom{a}}\overline{\phantom{a}}
```
Regarding the given massive prism *P* with the corners O, A, B, C, E and F we refer to the figure in the problem sheet.

Question 1

> divV: =div (V) (x, y, z)
\n
$$
divV := 5
$$
\n(4.1.1)
\n> rotV: =unapply (rot (V) (x, y, z), [x, y, z]):
\nrotV (x, y, z)
\n
$$
\begin{bmatrix} -z \\ 0 \\ x \end{bmatrix}
$$
\n(4.1.2)
\nVol(P) = $\frac{1}{2}$ Vol(box) = $\frac{4}{2}$ = 2.

Question 2

 ∂P is the closed surface of P with an orientation given by an outwards-directed unit normal vector. From Gauss' Theorem we then get

Flux(V,
$$
\partial P
$$
) = \int_P Div(V) dµ = $\int_P 5 dµ = 5 \int_P dµ = 5 Vol(P) = 10.$

Let *S* denote the side surface of *P* that has the corners B, C, E and F.

Question 3

Since *S* is the rectangle that has the corners B, C, E and F located within a plane with the equation $z = 2-y$, then a parametric representation of *S* is

> r:=(u,v)-><u,v,2-v>: > r(u,v)

(4.3.1) $\left[\begin{array}{c}u\\v\\2-v\end{array}\right]$

> ru:=diff(r(u,v),u) where $u \in [0; 1]$ and $v \in [0; 2]$.

$$
ru := \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$
 (4.3.2)

> rv:=diff(r(u,v),v)

$$
rv := \left[\begin{array}{c} 0 \\ 1 \\ -1 \end{array} \right]
$$
 (4.3.3)

The normal vector of the surface

> N:=kryds(ru,rv)

$$
N := \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right]
$$
 (4.3.4)

perfectly fulfills the right-hand rule with the chosen orientation of the closed boundary curve of *S* (show with red arrow on the figure in the problem sheet). From Stokes' Theorem we thus get

$$
Circ(V, \partial S) = \int_{\partial S} \mathbf{V} \cdot \mathbf{e}_{\partial S} d\mu = Flux(Curl(V), S) = \int_{S} \mathbf{n}_{S} \cdot Curl(V) d\mu = \int_{0}^{2} \int_{0}^{1} N(u, v) \cdot Curl(V)(\mathbf{r}(u \cdot v))
$$

d*u*d*v*

The curl computed on the surface

> Rot:=rotV(vop(r(u,v)))

$$
Rot := \left[\begin{array}{c} -2 + v \\ 0 \\ u \end{array} \right]
$$
 (4.3.5)

> integranden:=prik(Rot,N)

$$
integranden := u \tag{4.3.6}
$$

> Int(Int(integranden,u=0..1),v=0..2)=int(int(integranden,u=0. .1),v=0..2)

$$
\int_0^2 \left(\int_0^1 u \, \mathrm{d}u \right) \, \mathrm{d}v = 1 \tag{4.3.7}
$$