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Problem 1
restart;with(LinearAlgebra):with(plots):

A function f :  is given by the expression:
f:=(x,y)->x^2*y-3*x^2-4*y^2+8*y+11:
f(x,y)

K K

Question 1
f(x, y) = ( (x, y), (x, y)) = ( K K ) = ( K K ) = (0, 0) 

K and K
All stationary points of f

Question 2
If f has a local extremum at a point then that point must be a stationary point since f  has no 
exceptional points.
The Hessian matrix of f  at the points (x, y) is
H(x,y):=<diff(f(x,y),x,x),diff(f(x,y),x,y);diff(f(x,y),y,x),
diff(f(x,y),y,y)>

K

K8

H(0,1):=subs(x=0,y=1,H(x,y))
K4

K8

Eigenvalues(H(0,1),output=list)
K4 K8

Since both eigenvalues of H(0, 1) are negative, then  f  has a proper local maximum at the 
stationary point (0, 1).

H(4,3):=subs(x=4,y=3,H(x,y))

K8

Eigenvalues(H(4,3),output=list)
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K K K

Since the two eigenvalues of H(4, 3) have opposite signs, then  f  has neither local maximum nor 
local minimum at the stationary point (4, 3) (saddle point).

H(-4,3):=subs(x=-4,y=3,H(x,y))

K4
K8

K8 K8

Eigenvalues(H(-4,3),output=list)

K K K

Since the two eigenvalues of H f  has neither local maximum nor

contourplot(f(x,y),x=-6..6,y=-2..5,contours=40)

K K K

K

K

Question 3

A parabola with the equation K  along with a straight line with the equation y = 3 

delimit a bounded and closed set of points M.
implicitplot({y=1/4*x^2-1,y=3},x=-4..4,y=-1..3,scaling=
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(1.2.5)(1.2.5)

(1.3.2)(1.3.2)

constrained)

K K K K

K

Since M is bounded and closed and since f  is continuous on M, then f  has a global minimum and a
global maximum on M. Since f  does not have any exceptional points in the interior of M, then 
these values are found either at the stationary point or within the interior of M or on the boundary 
of M.
The only stationary point in the interior of M is (0, 1) where we have the function value
'f(0,1)'=f(0,1)

The value of f  on the two boundary curves is
simplify(f(x,1/4*x^2-1))

K1
for all x
f(x,3) 

K1
for all x
From numerical comparison of these investigations we find that the global maximum is 15, which

on the boundary of M. 
We note that since M is connected, then the image set (the range) is f(M
plot3d(f(x,y),x=-4..4,y=-1..3)
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Problem 2
restart;with(LinearAlgebra):with(plots):

A region M in the (x, z) plane is given by 

M = {(x, z)r 0    x  and }

p0:=plot([cos(x),sin(x)],x=0..Pi/4,scaling=constrained,color=
black):
p1:=plot([Pi/4,v,v=0..1],linestyle=dash):
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display(p0,p1,tickmarks=[2,3],labels=[x,z],title="M")

Question 1
A parametric representation of M is
s:=(u,v)-><u,sin(u)+v*(cos(u)-sin(u))>:
s(u,v)

K

where u ] and v u,sin(u)) to the point (u,

cos(u))).
M:=<diff(s(u,v),u)|diff(s(u,v),v)>

K K K

Js:=Determinant(M)
K
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> > 

u ]. The Jacobian function belonging to s is thus

Jacobi:=Js
K

Ar(M) = (u,v)dudv 

integranden:=Jacobi
K

Int(integranden,[u=0..Pi/4,v=0..1])=int(integranden,[u=0..
Pi/4,v=0..1])

K K

r:=(u,v,w)-><u*cos(w),u*sin(w),sin(u)+v*(cos(u)-sin(u))>
K

r(u,v,w)

K

where u ] , v2[0; 1] and w

M in the (x, z z
axis counter-clockwise as seen from the positive end of the z axis.

Question 2
M:=<diff(r(u,v,w),u)|diff(r(u,v,w),v)|diff(r(u,v,w),w)>

K

K K K

Jr:=simplify(Determinant(M))
K K

u ]. The Jacobian function belonging to r is thus

Jacobi:=-Jr
K
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 = (u,v,w)dudvdw

integranden:=Jacobi
K

Int(integranden,[u=0..Pi/4,v=0..1,w=0..Pi])=int(integranden,
[u=0..Pi/4,v=0..1,w=0..Pi])

K K

Problem 3
restart;with(LinearAlgebra):with(plots):
vop:=proc(X) op(convert(X,list)) end proc:

In the (x, y) plane we are given the velocity vector field V(x, y) = 
K

K

.

Question 1
For determination of the flow curves of V, we have the differential equation system

K

K

 = 
K

K

 , t

A:=<1/2,-1/2;-1/2,1/2>

K

K

Eigenvectors(A,output=list)
K1

All flow curves of V are thus given by
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K
e

K e

e
 , t  .

For determination of the constants  and , then  and we have the linear 

equation system
K

. From this we find  and .

 The wanted flow curve is thus
r:=t-><3-exp(t),3+exp(t)>:
r(t)

K e

e

where t
The curve thus initiates at the point
r(0)

and continues through the point
r(ln(3))

A curve K has the parametric representation s(u) =  , u

Question 2

For determination of the constants  and  so , we have the linear equation 

system
K K

 with the corresponding augmented matrix

T:=<1,-1,u;1,1,u^2>
K1
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c:=LinearSolve(T)

K

The flow curve r(u, t) that fulfills r(u,0) =  thus has the parametric representation

r:=(u,t)-><c[1]-c[2]*exp(t),c[1]+c[2]*exp(t)>:
r(u,t)

K K e

K e

For t = ln(3) and u
r(u,ln(3))

K

K

which is a parametric representation of the curve that K has been transformed into at time t = ln(3)
.
p1:=plot([vop(r(u,ln(3))),u=0..2],scaling=constrained,color=
red):
p2:=plot([u,u^2,u=0..2],scaling=constrained,color=blue):
p3:=pointplot([[2,4],[0,6]],symbol=solidcircle,color=[blue, 
red]):
p4:=plot([3-exp(t),3+exp(t),t=0..ln(3)],linestyle=dot,color=
darkgrey):
display(p1,p2,p3,p4,labels=[x,y])
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This question could of course also have been solved by use of dsolve.

Problem 4
restart:with(plots):
prik:=(x,y)->VectorCalculus[DotProduct](x,y):
kryds:=(x,y)->convert(VectorCalculus[CrossProduct](x,y),Vector):
vop:=proc(X) op(convert(X,list)) end proc:
grad:=X->convert(Student[VectorCalculus][Del](X),Vector):
div:=V->VectorCalculus[Divergence](V):
rot:=proc(X) uses VectorCalculus;BasisFormat(false);Curl(X)  end
proc:
with(LinearAlgebra):

A vector field V in (x, y, z) space is given by
V:=(x,y,z)-><-y*x,y^2+5,-y*z+5*z>:
V(x,y,z)

K

K
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Regarding the given massive prism P with the corners O, A, B, C, E and F we refer to the figure in 
the problem sheet.

Question 1
divV:=div(V)(x,y,z)

rotV:=unapply(rot(V)(x,y,z),[x,y,z]):
rotV(x,y,z)

K

Vol(P) = Vol(box) =  = 2.

Question 2
 is the closed surface of P with an orientation given by an outwards-directed unit normal 

vector. From Gauss' Theorem we then get

Flux(V, = (V 5  = 5Vol(P) = 10.

Let S denote the side surface of P that has the corners B, C, E and F.

Question 3
Since S is the rectangle that has the corners B, C, E and F located within a plane with the equation
z y, then a parametric representation of S is 

r:=(u,v)-><u,v,2-v>:
r(u,v)

K

where u v
ru:=diff(r(u,v),u)

rv:=diff(r(u,v),v)
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K1

The normal vector of the surface
N:=kryds(ru,rv)

perfectly fulfills the right-hand rule with the chosen orientation of the closed boundary curve  
of S (show with red arrow on the figure in the problem sheet). From Stokes' Theorem we thus get

Circ(V, ) = e  = Flux(Curl(V),S) = Curl(V (u,v) Curl(V)(r(u.v))

dudv 
The curl computed on the surface
Rot:=rotV(vop(r(u,v)))

K

integranden:=prik(Rot,N)

Int(Int(integranden,u=0..1),v=0..2)=int(int(integranden,u=0.
.1),v=0..2)


