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Problem 1
restart: with(LinearAlgebra): with(plots):

Given matrix with arbitrary constant 
A:=<a,1,2|1,a,1|2,1,a|1,2,1>

Given vectors with arbitrary constants 
v1:=<7,1,-3>;

v2:=<4,b,c>

K3

1)
Given  value

a:=0

Solving the matrix equation :

LinearSolve(<A|v1>);

simplify(%)
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General solution 

K K

K

2)
Given new  value

a:='a':

a:=2

Reducing the augmented matrix of the matrix equation :

RowOperation(<simplify(A)|v2>,1,1);

RowOperation(%,[3,1],-1);

RowOperation(%,[2,1]);

RowOperation(%,[2,1],-2);

RowOperation(%,2,-1/3);

RowOperation(%,[1,2],-2);
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An inconsistent system (so no solutions) when . There were no exceptional cases during the 
reduction to take into account. So, the matrix equation has solutions only when  for all . 

Problem 2
restart: with(LinearAlgebra): with(plots):

Given blue figure mapped to a red figure by a linear map :
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Given vectors in e-coordinates
ev1:=<3,4>;

ev2:=<0,2>

1)
Checking for linear independence:

Rank(<ev1|ev2>)
2

Since the rank of the matrix created from the two vectors as columns equals the number of vectors, 
then they are linearly independent. They both lie within  and two are needed to span this space, 
so  constitutes a basis for .

Change-of-basis matrix from - to e-coordinates
eMv:=<ev1|ev2>

2)
Reading from the graph, the two vectors map to: 
e  K

e  K

Mapping matrix wrt. v- and e-basis, respectively:
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eFv:=<-1,7|-2,2>
K1 K2

Mapping matrix wrt. e-basis:
eFe:=eFv.eMv^(-1)

K1

3)
Given vector  in e-coordinates

ew:=<1,4>

Its image  in e-coordinates:
efw:=eFe.ew

K3

Their lengths
L_w:=sqrt(ew.ew);

L_fw:=sqrt(efw.efw)

Cosine of angle between  and :

cos_theta:= cos(theta)=ew.efw/(L_w*L_fw):

simplify(cos_theta)

So,  or K , meaning that the angle between  and  is .

Repeating the angle calculation for a general vector 
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> > eq:=<x,y>

Its image 
efq:=eFe.eq

K

Their lengths
L_q:=sqrt(eq.eq) assuming real;

L_fq:=sqrt(efq.efq) assuming real;

K

Cosine of angle between  and :

cos_theta:=cos(theta)=eq.efq/(L_q*L_fq) assuming real;

simplify(%);
K

K

We see that the angle between an arbitrary proper vector and its image again becomes , so the 

map is angle conserving.

Problem 3
restart: with(LinearAlgebra): with(plots):

Given characteristic polynomial of a  real matrix 
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1)
Eigenvalues via the rule of zero product

lambda1:=-2;

lambda2:=1-I/2;

lambda3:=1+I/2

K2

K

2)
It is given that to eigenspace 

K
 belongs vector

u1:=<1,0,0>

and to eigenspace 
K

 belongs vector

u2:=<0,I,-1>

K1

These two vectors are thus eigenvectors of . So, they map to themselves with their corresponding 
eigenvalue as the proportionality constant,  and :

A.u__1=lambda1*u1;

A.u__2=lambda2*u2

K2
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K1

3)
Since the matrix is real, imaginary eigenvectors always come in complex conjugated pairs. We can 
thus state that to eigenspace  belongs vector:

u3:=conjugate(u2)

KI
K1

Since the sum of geometric multiplicities equals the number of rows (3) in the matrix, the matrix is 
diagonalizable with its eigenvalues defining the diagonal of a diagonal matrix  written with respect 
to an eigenbasis defined by the change-of-basis matrix  with corresponding eigenvectors as 
columns.

Lambda:=DiagonalMatrix(<lambda1,lambda2,lambda3>);

U:=<u1|u2|u3>

K2

K

KI

K1 K1

Rewriting to determine a mapping matrix  with the above eigenproperties:
K K

A:=U.Lambda.U^(-1)

K2

K
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Problem 4
restart: with(LinearAlgebra): with(plots):

Given matrix
A:=<-3,4|0,-2>

K3

K2

1)
Eigenvalues and -vectors

Eigenvectors(A,output=list)

K2 K3
K

So,  has the eigenvalues K  with a corresponding eigenvector  and K  with a 

corresponding eigenvector K .

2)
Given inhomogeneous system of linear differential equations:

eq1:=diff(x1(t),t)+3*x1(t)=-1+6*t;

eq2:=diff(x2(t),t)-4*x1(t)+2*x2(t)=-8*t

K

K K

The system matrix is identical to matrix  from question 1), so with those eigenvalues and -vectors, 
the general solution to the corresponding homogeneous system is

eK eK
K

 for any 

3)
Guessing a particular solution to the inhomogeneous system
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x1p:=a*t+b;

x2p:=c*t+d

First guess into first equation:
diff(x1p,t)+3*x1p

As per the identity theorem of polynomials, coefficients of same-degree terms are equal, so:
L1:=  3*a=6;

L2:=  a+3*b=-1

K1

Second guess into second equation:
diff(x2p,t)-4*x1p+2*x2p

K K

Again via the identity theorem:
L3:=  -4*a+2*c=-8;

L4:=  -4*b+c+2*d=0
K K8

K

Solving for the coefficients of the guess:
solve({L1,L2,L3,L4})

K1 K2

4)
The guess in question 3) worked and we have the particular solution:

K

K

Via the Structural Theorem, , the general inhomogeneous solution set is:

: eK eK
K K

K
 for any 




