THE TECHNICAL UNIVERSITY OF DENMARK

Written 2-hour test in the Autumn syllabus, December 6 2022.

**Course title:** Advanced Engineering Mathematics 1.

Permitted aids: You may bring and use all aids permitted by DTU.

Weight: The four problems weigh equally.

All answers must be well-reasoned, and relevant calculations must be shown to an appropriate extent.

Course no.: 01006

## **PROBLEM 1**

Let a, b and c be arbitrary real numbers. We consider the matrix

$$\mathbf{A} = \begin{bmatrix} a & 1 & 2 & 1 \\ 1 & a & 1 & 2 \\ 2 & 1 & a & 1 \end{bmatrix}$$

and the vectors  $\mathbf{v}_1 = (7, 1, -3)$  and  $\mathbf{v}_2 = (4, b, c)$ .

1. Let a = 0. Determine on standard parametric form the general solution to the matrix equation

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{v}_1$$

2. Let a = 2. Determine the values of b and c for which the matrix equation

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{v}_2$$

has solutions.

## **PROBLEM 2**

Let G2 denote the set of vectors in a 2D plane that are positioned from the origin in a standard  $(O, \mathbf{i}, \mathbf{j})$  coordinate system in which the standard basis  $(\mathbf{i}, \mathbf{j})$  is denoted e.

A linear map  $f: G2 \to G2$  is below illustrated as follows: A blue point P with position vector  $\overrightarrow{OP}$  is mapped to a red point which is the end point of  $f(\overrightarrow{OP})$ . The red figure is in this way the image by f of the blue figure.



We consider the vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  given by  $_e\mathbf{v}_1 = (3,4)$  and  $_e\mathbf{v}_2 = (0,2)$ .

- 1. Justify that the vector set  $v = (\mathbf{v}_1, \mathbf{v}_2)$  is a new basis for G2. Determine the change-of-basis matrix  ${}_e \mathbf{M}_v$ .
- 2. State the image vectors  $f(\mathbf{v}_1)$  and  $f(\mathbf{v}_2)$ , and determine the mapping matrices  ${}_e\mathbf{F}_v$  and  ${}_e\mathbf{F}_e$  of f.
- 3. A vector **w** is given by  $_{e}\mathbf{w} = (1,4)$ . Compute the angle between **w** and its image  $f(\mathbf{w})$ . Justify that the angle between an arbitrary other proper vector and its image vector is identical to the angle between **w** and  $f(\mathbf{w})$ .

## **PROBLEM 3**

The characteristic polynomial of a real  $3 \times 3$  matrix **A** is given on fully factorized form:

$$P(\lambda) = (\lambda+2) \cdot \left(\lambda-1+\frac{i}{2}\right) \cdot \left(\lambda-1-\frac{i}{2}\right), \ \lambda \in \mathbb{C}.$$

- 1. State the eigenvalues of A.
- 2. We are furthermore informed that the vector  $\mathbf{u}_1 = (1,0,0)$  belongs to the eigenspace  $E_{-2}$ , and that the vector  $\mathbf{u}_2 = (0, i, -1)$  belongs to the eigenspace  $E_{1-\frac{i}{2}}$ . Based on this, state  $\mathbf{A} \cdot \mathbf{u}_1$  and  $\mathbf{A} \cdot \mathbf{u}_2$ .
- 3. State a  $3 \times 3$  matrix that matches the above information about A.

## **PROBLEM 4**

We are given the matrix

$$\mathbf{A} = \begin{bmatrix} -3 & 0 \\ 4 & -2 \end{bmatrix}.$$

1. Compute the eigenvalues of **A**, and provide for each of them a corresponding proper eigenvector.

An inhomogeneous system of linear differential equations is given by

$$x'_1(t) + 3x_1(t) = -1 + 6t$$
  
$$x'_2(t) - 4x_1(t) + 2x_2(t) = -8t.$$

- 2. Determine the general solution to the homogeneous system of differential equations that corresponds to the above given inhomogeneous system.
- 3. A particular solution  $(x_1(t), x_2(t))$  to the given inhomogeneous system of differential equations exists so that  $x_1(t) = at + b$  and  $x_2(t) = ct + d$ . Substitute this guess on a particular solution into the system of differential equations and determine in this way the numbers a, b, c and d.
- 4. Use the results from questions 2 and 3 to determine the general solution to the given inhomogeneous system of differential equations.

End of the problem sheet.