01006 MATH 1, FALL 21, ESSAY QUESTION - SOLUTION

Note: See some alternative solutions on the next page.

- 1. From the figure, $f(\mathbf{v}_1)$ is proportional to \mathbf{v}_1 , therefore \mathbf{v}_1 is an eigenvector. $f(\mathbf{v}_2)$ is not proportional to \mathbf{v}_2 , so this is not an eigenvector.
- 2. We have $f(\mathbf{v}_1) = 3\mathbf{v}_1 + 0 \cdot \mathbf{v}_2$, so a = 3, b = 0. To find c and d we solve:

$$f(\mathbf{v}_2) = (1,7) = c(3,1) + d(-1,3),$$

for c and d. The solution is c = 1, d = 2. The mapping matrix in the basis v is:

$$_{\nu}F_{\nu} = \left[_{\nu}f(\mathbf{v}_1), _{\nu}f(\mathbf{v}_2) \right] = \left[\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array} \right].$$

Finally, in the basis v, the coordinates for \mathbf{v}_1 and \mathbf{v}_2 are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ respectively, so

$$_{\nu}f(\mathbf{v}_1+\mathbf{v}_2)=\left[\begin{array}{cc}3&1\\0&2\end{array}\right]\left[\begin{array}{c}1\\1\end{array}\right]=\left[\begin{array}{c}4\\2\end{array}\right].$$

- 3. (a) It's a square of sidelength $|\mathbf{v}_1| = \sqrt{10}$, so has area A = 10.
 - (b) A linear map stretches areas by the absolute value of the determinant so

$$A = |10 \det(f)| = 10 |\det_{\nu} F_{\nu}| = 10 \cdot 6 = 60.$$

4. The change of basis matrix and its inverse are:

$$_{e}M_{v}=\left[\begin{array}{cc} 3 & -1 \\ 1 & 3 \end{array} \right], \qquad _{v}M_{e}=_{e}M_{v}^{-1}=\frac{1}{10}\left[\begin{array}{cc} 3 & 1 \\ -1 & 3 \end{array} \right].$$

So the mapping matrix in the standard basis is:

$$_{e}F_{e} = _{e}M_{v} _{v}F_{v} _{v}M_{e} = \frac{1}{5} \begin{bmatrix} 13 & 6 \\ 1 & 12 \end{bmatrix}.$$

5. Working in the e-basis, we find the eigenvalues and vectors for ${}_{e}F_{e}$:

$$\lambda_1 = 3$$
, $\mathbf{w}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\lambda_2 = 2$, $\mathbf{w}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

This means, the mapping matrix is diagonal, diag(3,2) with respect to the basis $w = (\mathbf{w}_1, \mathbf{w}_2)$.

6. The map is diagonalizable if and only if all eigenvalues have the same geometric multiplicity as algebraic multiplicity. Working in the v basis, we have: ${}_{v}F_{v} = \begin{bmatrix} k & 1 \\ 0 & 7 \end{bmatrix}$. If we choose k = 7, we find there is one eigenvalue:

$$\lambda = 7$$
, $am(\lambda) = 2$, $gm(\lambda) = 1$.

Therefore, f is not diagonalizable for k = 7. (For other values of k it is diagonalizable).

Some alternative solutions

2

1 $f(\mathbf{v}_1) = (9,3) = 3(3,1) = 3\mathbf{v}_1$, therefore \mathbf{v}_1 is an eigenvector. On the other hand, if we try to solve $f(\mathbf{v}_2) = \lambda \mathbf{v}_2$ we would have:

$$f(\mathbf{v}_2) = (1,7) = \lambda(-1,3).$$

This gives the incompatible pair of equations:

$$\begin{cases} 1 = -\lambda \\ 7 = 3\lambda \end{cases}$$

so there is no solution and therefore \mathbf{v}_2 is not an eigenvector.

3 (a) It's the area of the parallelogram spanned by \mathbf{v}_1 and \mathbf{v}_2 , so we can use the formula

$$|\det[\mathbf{v}_1,\mathbf{v}_2]| = \begin{vmatrix} 3 & -1 \\ 1 & 3 \end{vmatrix} = 10.$$

- (b) We can use $f(A) = f(\mathbf{v}_1) = (9,3)$ and $f(C) = f(\mathbf{v}_2) = (1,7)$, and the area of the parallelogram spanned by these is: $\left| \det \begin{pmatrix} \begin{bmatrix} 9 & 1 \\ 3 & 7 \end{bmatrix} \right| = 60$.
- 4 We have

$$_{e}F_{v} = [_{e}f(\mathbf{v}_{1}), _{e}f(\mathbf{v}_{2})] = \begin{bmatrix} 9 & 1 \\ 3 & 7 \end{bmatrix},$$

and the mapping matrix in the standard basis is:

$$_{e}F_{e} = {}_{e}F_{v} {}_{v}M_{e} = \frac{1}{5} \begin{bmatrix} 13 & 6 \\ 1 & 12 \end{bmatrix}.$$

5 Working in the v basis, we find the eigenvalues and eigenvectors of $_{v}F_{v}$ to be:

$$\lambda_1 = 3, \quad \mathbf{u}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \qquad \quad \lambda_2 = 2, \quad \mathbf{u}_2 = \left[\begin{array}{c} -1 \\ 1 \end{array} \right].$$

Here \mathbf{u}_1 and \mathbf{u}_2 are coordinates for these vectors in the \mathbf{v} basis (since we used $_{\nu}F_{\nu}$), so the meaning is that the mapping matrix is diagonal, diag(3,2) in the basis:

$$\mathbf{u}_1 = \mathbf{v}_1, \qquad \mathbf{u}_2 = -\mathbf{v}_1 + \mathbf{v}_2.$$

Note: comparing with the answer we got in the first version,

$$_{e}\mathbf{u}_{1}={}_{e}\mathbf{v}_{1}=\left[\begin{array}{c}3\\1\end{array}\right]=\mathbf{w}_{1},\qquad _{e}\mathbf{u}_{2}={}_{e}(-\mathbf{v}_{1}+\mathbf{v}_{2})=\left[\begin{array}{c}-4\\2\end{array}\right]=2\mathbf{w}_{1},$$

so the basis is the same up to a scaling of \mathbf{w}_1 .