TECHNICAL UNIVERSITY OF DENMARK

Written exam on the Fall syllabus, 5 December 2021.

Course Name: Advanced Engineering Mathematics 1.

Course Number. 01006

Aids Allowed: All aids allowed by DTU may be used. The rules in general are described in "Syllabus & Rules", under "Agendas" on the course homepage.

Essay Question

A standard right-angle $(O, \mathbf{i}, \mathbf{j})$ coordinate system is given in the plane. We consider the vectors space G2 of geometric vectors in the plane, with initial point at the origin O. Two vectors, $\mathbf{v}_1 = 3\mathbf{i} + \mathbf{j}$ and $\mathbf{v}_2 = -\mathbf{i} + 3\mathbf{j}$ form a basis $v = (\mathbf{v}_1, \mathbf{v}_2)$ for G2. We consider a linear map $f: G2 \rightarrow G2$, as shown in the figure. (NB: the coordinates of all vectors shown are integers).

- (1) Show that \mathbf{v}_1 is an eigenvector for f, but \mathbf{v}_2 is not.
- (2) The images $f(\mathbf{v}_1)$ and $f(\mathbf{v}_2)$ can be written as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 :

 $f(\mathbf{v}_1) = a\mathbf{v}_1 + b\mathbf{v}_2$ and $f(\mathbf{v}_2) = c\mathbf{v}_1 + d\mathbf{v}_2$.

Find the numbers *a*, *b*, *c* and *d* and write down the mapping matrix $_{v}\mathbf{F}_{v}$ for *f* with respect to the basis *v*. Determine the coordinate vector $_{v}f(\mathbf{v}1+\mathbf{v}2)$.

- (3) Let A, B and C denote the endpoints of v₁, v₁ + v₂ and v₂ respectively.
 a) Determine the area of the parallelogram that has corners O, A, B and C.
 b) Determine the area of the parallelogram that has corners O, f(A), f(B) and f(C).
- (4) Determine the mapping matrix ${}_{e}\mathbf{F}_{e}$ for f with respect to the basis $e = (\mathbf{i}, \mathbf{j})$.
- (5) Determine a new basis for G2 with respect to which the mapping matrix for f becomes a diagonal matrix.
- (6) If we now modify f so that $f(\mathbf{v}_1) = k\mathbf{v}_1$, where $k \in \mathbb{R}$, and $f(\mathbf{v}_2) = \mathbf{v}_1 + 7\mathbf{v}_2$, are there values of k for which f is not diagonalizable?