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eNote 29

Stokes’ Theorem

In this eNote we will use Gauss’ Divergence Theorem from eNote 28 in order to motivate, prove
and illustrate Stokes’ Theorem that expresses a precise relation between curl and circulation of
a given vector field: For every smooth parameterized surface Fr the flux of the curl of a smooth
vector field V(x, y, z) through Fr is equal to the circulation of the vector field along the
boundary curve ∂F. As here indicated we shall need both volume, surface and line integrals
together with knowledge about vector fields and their restrictions to surfaces and curves. I.e.
the basis material for this eNote is to be found in a series of eNotes: eNote 24 (about plane and
line integrals), eNote 25 (about surface integrals), eNote 26 (about vector fields), eNote 27
(about tangential line integrals and circulations), and eNote 28 (about flux calculations and
Gauss’ Theorem).

Updated: 11.1.2022, D.B.
Updated: 2.2.2023, shsp.

29.1 Stokes’ Theorem

Stokes’ theorem is one of the most elegant and most utilized results from the analysis of
vector fields in 3D space. Like Gauss’ divergence theorem, the theorem has numerous
applications - e.g. in fluid mechanics and in electromagnetism.

Here is a quote that tells a bit of the history behind the result:
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Figure 29.1: George Gabriel Stokes. See Biography.

The history of Stokes’ Theorem is clear but very complicated. It was first
given by Stokes without proof - as was necessary since it was given as an
examination question for the Smith’s Prize Examination of that year [1854,
at Cambridge]! Among the candidates for the prize was Maxwell, who later
traced to Stokes the origin of the theorem, which by 1870 was frequently
used. On this see George Gabriel Stokes, Mathematical and Physical Papers,
vol. V (Cambridge, England, 1905), 320–321. See also the important histori-
cal footnote which indicates that Kelvin in a letter of 1850 was the first who
actually stated the theorem, although others as Ampère had employed "the
same kind of analysis ... in particular cases."

M. J. Crowe, [A History of Vector Analysis, 1967], p. 147.

As indicated Stokes’ result is as important as is Gauss’ divergence theorem. They are
both members of a ’family’ of results, where the main idea is to rewrite an integral over
a region to another integral over the boundary of the region - that is, so to speak, to
’push the integration out on the boundary’. The oldest member of that family is the
Fundamental Theorem of Calculus, cf. Theorem 23.13 in eNote 23 which we repeat here
in the following formulation:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Stokes.html
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Figure 29.2: James Clerk Maxwell (Biography), William Thomson (Lord Kelvin) (Biography),
and André-Marie Ampère (Biography).

Theorem 29.1 The Fundamental Theorem of Calculus

Let f (u) denote a continuous function on R. Then the following function is differ-
entiable

A(x) =
∫ x

0
f (u)du with A′(x) = f (x) . (29-1)

If F(x) is another function that fulfills F′(x) = f (x) then∫ b

a
f (u)du = F(b)− F(a) . (29-2)

This is Stokes’ Theorem:

Theorem 29.2 Stokes’ Theorem

Let Fr denote a smooth parameterized surface with the boundary curve ∂Fr and a
unit normal vector field nF and let V be a smooth vector field in R3. Then it applies
that ∫

F
Curl(V) · nF dµ =

∫
∂F

V · e∂F dµ . (29-3)

In the calculation of the right-hand side the orientation of the boundary curve (given
by the direction of the unit tangential vector field e∂F ) must be chosen such that the
cross product e∂F × nF points away from the surface along the boundary.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Maxwell.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Thomson.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Ampere.html
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Therefore Stokes’ Theorem says – like (29-2) – that an inner integral (here on a
surface segment) can be expressed as a boundary integral (along the boundary
of the surface segment).
Stokes’ Theorem can also be formulated as follows, cf. the definitions of flux
and circulation in eNote 28 and eNote 27, respectively:

Flux(Curl(V), Fr) = Cirk(V, ∂F) . (29-4)

I.e.: The flux of the curl of the vector field V through the surface Fr is equal to
the circulation of the vector field along the closed boundary curve of the surface
segment ∂F.

Note that if Fr is the whole surface of a spatial region then ∂F = ∅ and therefore
it follows from Stokes’ theorem that

Flux(Curl(V), Fr) = 0 (29-5)

in accordance with Corollary 28.22.

29.2 Motivation and Proof of Stokes’ Theorem

We shall need the following result that is also mentioned in Section 26.5:

Theorem 29.3

Let V(x, y, z) and W(x, y, z) denote two vector fields in R3. Then the following
identity holds

Div(V × W) = Curl(V) · W − V · Curl(W) . (29-6)

Therefore in particular we have: If W is a gradient vector field of a function ψ(x, y, z)
in R3, i.e. W = ∇(ψ) , then we get from Curl(∇(ψ)) = 0 :

Div(V ×∇(ψ)) = Curl(V) · ∇(ψ) . (29-7)

By using Gauss’ divergence theorem in connection with (29-7) we directly get an inter-
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esting result about integrals over spatial regions like this:

Theorem 29.4 A Consequence of Gauss’ Divergence Theorem

Let ψ(x, y, z) denote a smooth function and V(x, y, z) a smooth vector field in R3.
Let Ω be a spatial region with the boundary ∂Ω and outward-pointing unit normal
vector field n∂Ω on ∂Ω.

Then we have directly from Gauss’ Theorem 28.15:∫
Ω

Div(V ×∇(ψ))dµ =
∫

∂Ω
(V ×∇(ψ)) · n∂Ω dµ . (29-8)

Using (29-7) we thus get∫
Ω

Curl(V) · ∇(ψ) dµ =
∫

∂Ω
(n∂Ω × V) · ∇(ψ) dµ . (29-9)

On the right-hand side in equation (29-9) we have used that the scalar triple
product [abc ] = (a × b) · c of three vectors a, b and c satisfies the following
identities (of which we have used the first one):

[abc ] = [cab ] = [bca ] = −[bac ] = −[cba ] = −[acb ] . (29-10)

In particular we get the total curl of the vector field V in Ω like this:

Corollary 29.5 Total Curl in a Spatial Region

Let Ω be a spatial region with the boundary ∂Ω and outward-directed unit normal
vector field n∂Ω on ∂Ω. Then for every smooth vector field V(x, y, z) it applies that:∫

Ω
Curl(V)dµ =

∫
∂Ω

n∂Ω × V dµ . (29-11)
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Proof

This follows directly from (29-9) by choosing alternatingly ψ(x, y, z) = x , ψ(x, y, z) = y and
ψ(x, y, z) = z , such that ∇(ψ) is (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.

■

The right-hand side of the equation (29-11) we will call the total torsion of the surface
∂Ω with the vector field V with respect to the normal vector field n∂Ω and furthermore
denote this vector by Tors(V, ∂Ω), like this:

Definition 29.6 Torsion

Let Fr denote a smooth surface in (x, y, z) space with standard unit normal vector
field nF, and let V(x, y, z) be a smooth vector field. Then we define the torsion of Fr
with the vector field V(x, y, z) in the following way:

Tors(V, Fr) =
∫

Fr
nF × V dµ . (29-12)

Generally the total curl of a given vector field in a spatial region (also called the ’total
vorticity’ in fluid mechanics) is also – via 29.5 – equal to the torsion of the surface of
that region by the vector field. This is very similar to the corresponding Gauss identity
for the total divergence of a smooth vector field, Theorem 28.15: The total divergence of
the vector field in a certain region is equal to the flux of the vector field out through the
surface of that region.

In correspondence with Theorem 28.13 we also have the following interpretation and
construction of the rotation vector at a given point:
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Theorem 29.7 Curl-Torsion Relation

The curl of a vector field expresses the volume-relative local torsion of the surface for the
vector field, or to be exact: Let Kρ denote a solid sphere with radius ρ and centre at
the point (x0, y0, z0). Then:

lim
ρ→0

(
1

Vol(Kρ)
Tors(V, ∂Kρ)

)
= Curl(V)(x0, y0, z0) . (29-13)

Theorem 29.7 is proved in the same way as the analogous identity for the di-
vergence. The vector field is expanded to the first order with the development
point p and is inserted in the torsion expression, following which the following
identities are used:

∫
∂Kρ

x dµ =
∫

∂Kρ

y dµ =
∫

∂Kρ

z dµ = 0 ,∫
∂Kρ

x2 dµ =
∫

∂Kρ

y2 dµ =
∫

∂Kρ

z2 dµ = (4 π/3) ρ4 = ρ Vol(Kρ) ,∫
∂Kρ

x y dµ =
∫

∂Kρ

x z dµ =
∫

∂Kρ

z y dµ = 0 .

(29-14)
The only partial derivatives of the coordinate functions of the vector field that
are not eliminated through integration are precisely those appearing in the ro-
tation vector Curl(V) when this is evaluated at p. Try this!

Example 29.8 Local Torsion of the Spherical Surface Yielding the Curl

We look at a rotating vector field V(x, y, z) = (−y, x, 1). This field has the constant
Curl(V) = (0, 0, 2) . We will show how Tors(V, ∂Kρ) gives precisely this curl at the point
(0, 0, 0). So let Kρ denote the spherical surface that has radius ρ , centre at (0, 0, 0) and sur-
face ∂Kρ with outward-directed normal vector field n = 1

ρ (x, y, z). Then

Tors(V, ∂Kρ) =
∫

∂Kρ

n∂K × V dµ

=
1
ρ

∫
∂Kρ

(x, y, z)× (−y, x, 1) dµ

=
1
ρ

∫
∂Kρ

( y − x z , −x − y z , x2 + y2 ) dµ

= (0, 0, 2 Vol(Kρ) )

= Vol(Kρ) Rot(V)(0, 0, 0) ,



eNote 29 29.2 MOTIVATION AND PROOF OF STOKES’ THEOREM 8

in compliance with Theorem 29.7.

In more complicated cases the total torsion of a surface with a given vector field
can be computed with Maple. If the actual surface is the boundary surface of
a given spatial region the torsion can also be computed as the integral of the
corresponding rotational vector field over the spatial region. By this it is also
possible to show the applicability of Equation (29-11).

29.2.1 The Surface, the Boundary and the Normal Vector Field

The surfaces that are considered in Stokes’ Theorem are parameterized in the ordinary
way:

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 , (29-15)

where
(u, v) ∈ D = [a, b]× [c, d] ⊂ R2 . (29-16)

The boundary ∂Fr of Fr appears through the use of the vector function r on the four
straight line segments constituting the boundary ∂D of the rectangular parametric re-
gion D = [a, b]× [c, d]. We parameterize all of ∂D at once by using a parameter θ and a
vector function d:

∂D : d(θ) = (u(θ), v(θ)) ∈ ∂D ⊂ R2 , θ ∈ I ⊂ R ,

where u(θ) and v(θ) only are piecewise differentiable functions of θ. E.g. they can be
chosen as linear functions of θ for each of the four line segments that constitute ∂D.

The boundary of Fr is then

∂Fr : b(θ) = r(d(θ)) = r(u(θ), v(θ)) ∈ R3 , θ ∈ I ⊂ R .

The Jacobian functions of r and b are:

Jacobianr(u, v) = ∥r′u × r′v∥ , and (29-17)

Jacobianb(θ) = ∥b′
θ∥ , (29-18)

respectively. The regularity of r gives

Jacobianr(u, v) > 0 for all (u, v) ∈ D .
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The unit normal vector field along Fr is correspondingly nF = n(u, v):

n(u, v) =
r′u × r′v

∥r′u × r′v∥
for all (u, v) ∈ D . (29-19)

29.2.2 Tubular Shells and a Distance Function

We define the tubular shell with thickness t from Fr as the following region in R3:

Ωt : R(u, v, w) = r(u, v) + w n(u, v) , (u, v) ∈ D , w ∈ [0, t] . (29-20)

In particular the surface Fr is exactly the base surface of the shell and is found by the use
of the map R on D (where w = 0):

F0 = FR(0) = Fr : r(u, v) = R(u, v, 0) , (u, v) ∈ D . (29-21)

Correspondingly we get for w = t, the top surface of the shell. This is parameterized
like this:

Ft = FR(t) = F̂r : r̂(u, v) = R(u, v, t) , (u, v) ∈ D . (29-22)

Figure 29.3: A tubular shell that is defined by flow along the unit normal vector field nF
from a square.

The Jacobian function of R is

JacobianR(u, v, w) = |
(
R′

u × R′
v
)
· R′

w|
= |

(
(r′u + w n′

u)× (r′v + w n′
v)
)
· nF| .

(29-23)
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Figure 29.4: A tubular shell defined by a flow along the unit normal vector field nF from a
surface segment of a spherical surface.

Since nF is a unit vector field that is parallel to r′u × r′v along Fr we obtain especially (for
w = 0):

JacobianR(u, v, 0) = |
(
r′u × r′v

)
· nF|

= ∥r′u × r′v∥
= Jacobianr(u, v) > 0 .

(29-24)

The map R is regular and bijective on D × [0, t] - if only t is sufficiently small. This fol-
lows partly from JacobianR(u, v, 0) > 0 and partly from the continuity of JacobianR(u, v, w).

The value of w considered as a function of Ωt ⊂ R3 is a differentiable function of the
three variables (x, y, z). Even though this appears to be quite evident, intuitively, it is in
fact a result that is best formulated and argued in the so-called inverse function theorem,
a subject covered in the course Matematik 3:

Theorem 29.9 Inverse Function Theorem

Let Q denote an open set in R3 and let f : Q → R3 denote a differentiable bijective
map with Jacobianf(x) > 0 for all x ∈ Q.

Then the inverse map f◦−1 : f(Q) → Q is also differentiable with Jacobianf◦−1(y) >
0 for all y ∈ f(Q).

http://www.mat.dtu.dk/Uddannelse/Civil.aspx?coursecode=01330
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Accordingly, in this case the intuition is precise and correct. When t is sufficiently small
then w is a differentiable function of the three variables, (x, y, z); let us call that function
h(x, y, z), (x, y, z) ∈ Ωt. That function then has a proper gradient ∇(h)(x, y, z) that is
perpendicular to the level surfaces of h. In particular ∇(h) is perpendicular to the top
surface Ft = FR(t) of the shell Ωt, where h = t and it is correspondingly perpendicular
to the base surface F0 = FR(0) = Fr, where h = 0.

The gradient ∇(h) is actually precisely equal to nF on the base surface. To realize this
we only need to show that the length of the gradient is equal to 1. The direction is
certainly the same. Therefore let (u0, v0) denote a point in D and consider the restriction
of h to the straight line r(u0, v0) + w n(u0, v0), where w ∈ [0, t]. Let us use the notation
r0 = r(u0, v0) and n0 = n(u0, v0). Then the chain rule gives

1 = | d
dw

h(r0 + w n0) |

= |n0 · ∇(h)(r0 + w n0) |
= ∥∇(h)(r0 + w n0) ∥ ,

(29-25)

such that we on the surface Fr, where w = 0, have ∥∇(h)(r0)∥ = 1 . This was what we
should prove. Therefore we have:

∇(h)|F = nF . (29-26)

The function h(x, y, z) is the Euclidian distance from the point (x, y, z) to the
surface Fr. Locally, i.e. sufficiently close to (and in the direction of the normal
of) the surface Fr, ∇h(x, y, z) is an extension of the unit normal vector field nF
to the surface. The vector field ∇h(x, y, z) is in itself a unit vector field. By
letting Fr flow for time t along the flow curves of ∇h(x, y, z) the spatial region,
the solid shell, Ωt, is formed (swept), see Figures 29.3, 29.4.

29.2.3 Integration in the Shell

For a function f (x, y, z) that is defined in Ωt we get the integral of f over the region like
this: ∫

Ωt
f dµ

=
∫ t

0

(∫
D

f (R(u, v, w))JacobianR(u, v, w)du dv
)

dw .
(29-27)
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The t-derivative of this integral is, for t = 0, simply the surface integral of f over Fr:

Lemma 29.10 The Surface Integral as the t-Derivative of a Volume Integral

(
d
dt

)
|t=0

∫
Ωt

f dµ =
∫

Fr
f dµ . (29-28)

Proof

It follows directly from the Fundamental Theorem 29.1:(
d
dt

)
|t=0

∫
Ωt

f dµ

=

(
d
dt

)
|t=0

∫ t

0

(∫
D

f (R(u, v, w))JacobianR(u, v, w)du dv
)

dw

=
∫

D
f (R(u, v, 0))JacobianR(u, v, 0)du dv

=
∫

D
f (r(u, v))Jacobianr(u, v)du dv

=
∫

Fr

f dµ .

(29-29)

■

29.2.4 The Wall

The shell Ωt has a boundary ∂Ωt consisting of the top surface Ft, the base surface F0 =
Fr = FR(0) and a ’wall’ Wt with the height t. See Figures 29.3 and 29.4. We get the wall
component by restricting the map R to ∂D × [0, t] like this:

Wt : B(θ, w) = R(u(θ), v(θ), w)

= r(u(θ), v(θ)) + w n(u(θ), v(θ))
= b(θ) + w n(d(θ)) , θ ∈ I , w ∈ [0, t] .

(29-30)
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The Jacobian function of this map is therefore

JacobianB(θ, w) = ∥B′
θ × B′

w∥
= ∥(b′

θ + w (n ◦ d)′θ)× nF∥ .
(29-31)

Since nF is perpendicular to the surface Fr and therefore also to the boundary ∂Fr (pa-
rameterized via b), we get:

JacobianB(θ, 0) = ∥b′
θ × nF∥ = ∥b′

θ∥ = Jacobianb(θ) . (29-32)

29.2.5 Integration along the Wall

For a given function g(x, y, z) defined on Wt the integral of g over this surface:∫
Wt

g dµ =
∫ t

0

(∫
I

g(B(θ, w)) JacobianB(θ, w)dθ

)
dw . (29-33)

The t-derivative of this integral is, for t = 0, the line integral of g over ∂F:

Lemma 29.11 The Line Integral as the t-Derivative of the Surface Integral

(
d
dt

)
|t=0

∫
Wt

g dµ =
∫

∂F
g dµ . (29-34)

Proof

Again this follows from the Fundamental Theorem, Theorem 29.1:(
d
dt

)
|t=0

∫
Wt

g dµ

=

(
d
dt

)
|t=0

∫ t

0

(∫
I

g(B(θ, w))JacobianB(θ, w)dθ

)
dw

=
∫

I
g(B(θ, 0))JacobianB(θ, 0)dθ

=
∫

I
g(b(θ))Jacobianb(θ)dθ

=
∫

∂F
g dµ .

(29-35)
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■

29.2.6 Proof of Stokes’ Theorem

We are now ready to prove Theorem 29.2.

Proof

The function h(x, y, z) from the previous Section 29.2.2 is substituted instead of ψ(x, y, z) in
Theorem 29.4, Equation (29-9). With the integration region Ω = Ωt we then get:∫

Ωt

Curl(V) · ∇(h)dµ

=
∫

∂Ωt

(n∂Ωt × V) · ∇(h) dµ

=
∫

Ft

(nFt × V) · ∇(h) dµ

−
∫

F0

(nF0 × V) · ∇(h) dµ

+
∫

Wt

(nWt × V) · ∇(h) dµ .

(29-36)

But in Equation (29-36) we have∫
Ft

(nFt × V) · ∇(h) dµ = 0 and∫
F0

(nF0 × V) · ∇(h) dµ = 0 ,
(29-37)

since ∇(h) is perpendicular to both surfaces Ft and F0 such that ∇(h) is proportional to nFt

and nF0 on the respective surfaces.

Along ∂F ⊂ Wt we have nWt = e∂F × nF and therefore e∂F = nF × nWt - in accordance with
the orientation rule in Theorem 29.2. If we take the derivative with respect to t on both sides
of the reduced equation (29-36) we get:(

d
dt

)
|t=0

∫
Ωt

Curl(V) · ∇(h)dµ

=

(
d
dt

)
|t=0

∫
Wt

(nWt × V) · ∇(h) dµ ,
(29-38)



eNote 29 29.3 VERIFICATION OF STOKES’ THEOREM IN CONCRETE EXAMPLES 15

such that we finally have - by virtue of Equations (29-28) and (29-34):∫
F

Curl(V) · nF dµ

=
∫

∂F
(nWt × V) · nF dµ

=
∫

∂F
V · (nF × nWt) dµ

=
∫

∂F
V · e∂F dµ .

(29-39)

Stokes’ Theorem is hereby proven.

■

29.3 Verification of Stokes’ Theorem in Concrete Examples

Like Gauss’ Divergence Theorem, Stokes’ Theorem can be verified by – in actual cases
– calculating both sides of the identity (29-3) in Stokes’ Theorem.

Example 29.12 Stokes’ Theorem with a Circular Disc

A standard circular disc in the (x, y) plane is given by its ordinary parametric representation:

Fr : r(u, v) = (u · cos(v), u · sin(v), 0) , (u, v) ∈ [0, 1]× [−π, π] (29-40)

with the Jacobian function
Jacobianr(u, v) = u , (29-41)

the standard unit normal vector field to the surface

nF = (0, 0, 1) , (29-42)

and the standard unit tangential vector field along the circular boundary ∂F:

e∂F = r′v(1, v) = (− sin(v) , cos(v) , 0) . (29-43)

Note that it is r(1, v), v ∈ [−π, π] that gives the whole boundary, that r′v(1, v) is a unit
vector for all v, and that r′v(1, v)× nF points away from the circular disc along the
whole boundary curve.
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A smooth vector field in (x, y, z) space is given by its coordinate functions like this:

V(x, y, z) = (x · y , x , x2) , (29-44)

and has the corresponding curl vector field

Curl(V)(x, y, z) = (0 , −2 · x , 1 − x) . (29-45)

We will verify Stokes’ Theorem by computing both sides of equation (29-3) in this concrete
case.

The total flux of the vector field Curl(V)(x, y, z) through Fr in the direction of the standard
unit normal nF = (0, 0, 1) is

Flux(Curl(V), Fr) =
∫

Fr

Curl(V) · nF dµ

=
∫

Fr

(1 − x)dµ

=
∫ π

−π

∫ 1

0
(1 − u · cos(v)) · u du dv

=
∫ π

−π

(
1
2
− 1

3
· cos(v)

)
dv

= π .

(29-46)

The circulation of the vector field V(x, y, z) along ∂Fr in the direction of the standard unit
tangential vector field e∂F = (− sin(v), cos(v) , 0) is

Cirk(V, ∂F) =
∫

∂F
V · e∂F dµ

=
∫ π

−π
V(r(1, v)) · (− sin(v), cos(v) , 0)dv

=
∫ π

−π
(cos(v) · sin(v) , cos(v) , ∗) · (− sin(v), cos(v) , 0)dv

=
∫ π

−π
(− cos(v) · sin2(v) + cos2(v))dv

=
∫ π

−π
cos2(v)dv

=
1
2

∫ π

−π

(
cos2(v) + sin2(v)

)
dv

=
1
2

∫ π

−π
1 dv

= π .

(29-47)

Therefore both sides in Equation (29-3) give π in this example – and thus we have verified
Stokes’ theorem.
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Figure 29.5: A circular disc in a vector field V(x, y, z) = (x · y, x, x2) (in the middle) and vector
field Curl(V)(x, y, z) = (0, −2 · x, 1 − x).

Figure 29.6: The restriction of the vector field Curl(V)(x, y, z) = (0, −2 · x, 1 − x) to a circular
disc, the boundary of the circular disc, and the vector field V(x, y, z) = (x · y, x, x2) bounded to
the surface.

Example 29.13 Stokes’ Theorem with a Paraboloid

A segment of a paraboloid is given by a parametric representation like this:

Fr : r(u, v) = (2 · u · cos(v), 2 · u · sin(v), u2) , (29-48)

where
(u, v) ∈ [1/2, 1]× [0, π] (29-49)

The parametric representation has the Jacobian function

Jacobianr(u, v) = 4 · u cot
√

1 + u2 , (29-50)



eNote 29 29.3 VERIFICATION OF STOKES’ THEOREM IN CONCRETE EXAMPLES 18

and the standard normal vector field (not necessarily consisting of unit vectors) to the surface
is given by

NF(u, v) = r′u(u, v)× r′v(u, v) = (−4 · u2 · cos(v), −4 · u2 · sin(v), 4 · u) . (29-51)

A smooth vector field in (x, y, z) space is given by its coordinate functions like this:

V(x, y, z) = (z, y,−x) , (29-52)

with the corresponding rotation vector field

Curl(V)(x, y, z) = (0 , 2 , 0) . (29-53)

We will verify Stokes’ Theorem by computing both sides of Equation (29-3) in this concrete
case.

The total flux of the vector field Curl(V)(x, y, z) through Fr in the direction of the standard
unit normal is, using the normal vector field NF(u, v) directly:

Flux(Curl(V), Fr) =
∫

Fr

Curl(V) · nF dµ

=
∫ π

0

∫ 1

1/2
Curl(V) · NF(u, v)du dv

=
∫ π

0

∫ 1

1/2

(
−8 · u2 · sin(v)

)
du dv

=
∫ π

0

(
−7
3

· sin(v)
)

dv

=
−14

3
.

(29-54)

The circulation of the vector field V(x, y, z) along ∂Fr in the direction of the correctly oriented
boundary curve consists of four components. We get these from the parametric representa-
tion of the surface r(u, v) partly by fixing v to be 0 and π, respectively, and partly by fixing
u to be 1/2 and 1, respectively, while in each case at the same time seeing to it that the free
parameter runs the ’right way’, i.e. such that all four boundary components get the right
orientation in relation to the normal vector field of the surface:

∂1F : r1(u) = r(u, 0) = (2 · u, 0, u2) , u ∈ [1/2, 1]

r′1(u) = (2, 0, 2 · u)

V(r1(u)) = (u2, 0, −2 · u)

r′1(u) · V(r1(u)) = −2 · u2 ,

(29-55)
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∂3F : r3(u) = r(1 − u + 1/2, v) = (−3 + 2 · u, 0, (−3/2 + u)2) , u ∈ [1/2, 1]

r′3(u) = (2, 0, 2 · u − 3)

V(r3(u)) = ((−3/2 + u)2, 0, 3 − 2 · u)

r′3(u) · V(r3(u)) =
−9
2

+ 6 · u − 2 · u2 ,
(29-56)

∂2F : r2(v) = r(1, v) = (2 · cos(v), 2 · sin(v), 1) , v ∈ [0, π]

r′2(v) = (−2 · sin(v), 2 · cos(v), 0)

V(r2(v)) = (1, 2 · sin(v), −2 · cos(v))

r′2(v) · V(r2(v)) = 2 · sin(v) · (2 · cos(v)− 1) ,

(29-57)

∂4F : r4(v) = r(1/2, π − v) = (− cos(v), sin(v), 1/4) , v ∈ [0, π]

r′4(v) = (sin(v), cos(v), 0)

V(r4(v)) = (
1
4

, sin(v), cos(v))

r′4(v) · V(r4(v)) =
1
4
· sin(v) · (cos(v) + 1) .

(29-58)

Thus we have the following total circulation of V(x, y, z) along the boundary:

Cirk(V, ∂F) =
4

∑
i=1

Cirk(V, ∂iF)

=
4

∑
i=1

∫
∂i F

V(ri(t)) · r′i(t) dt

=
∫ 1

1/2

(
−2 · u2) du

+
∫ 1

1/2

(
−9
2

+ 6 · u − 2 · u2
)

du

+
∫ π

0
2 · sin(v) · (2 · cos(v)− 1) dv

+
∫ π

0

1
4
· sin(v) · (cos(v) + 1) dv

= − 7
12

− 7
12

− 4 +
1
2
= −14

3
.

(29-59)

Therefore both sides in the equation (29-3) yield −14/3 in this example, and again we have
verified Stokes’ Theorem.
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Figure 29.7: A segment of a paraboloid in a vector field V(x, y, z) = (z, y, −x) (in the middle)
and the vector field Curl(V)(x, y, z) = (0, 2, 0).

Figure 29.8: The restriction of the vector field Curl(V)(x, y, z) = (0, 2, 0) to a segment of a
paraboloid, the boundary of the surface segment and the vector field V(x, y, z) = (z, y, −x)
restricted to the boundary.

Exercise 29.14

Let Fr denote the surface having the following parametric representation and parametric re-
gion:

Fr : r(u, v) = ((1 + u2) cos(v), (1 + u2) sin(v), sin(u)) , (29-60)

where
(u, v) ∈ [−π

2
,

π

2
]× [−π,

π

2
] . (29-61)

Verify that Stokes’ Theorem is fulfilled for the vector field V = (yx , yz , xz) over the surface
Fr with the given boundary ∂Fr.
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Figure 29.9: August Ferdinand Möbius, see Biography.

Exercise 29.15

Let Fr denote the surface – a so-called Möbius strip – that has the following parametric rep-
resentation and parameter region:

Fr : r(u, v)

= (2 cos(u) + v cos(u/2) cos(u) , 2 sin(u) + v cos(u/2) sin(u) , v sin(u/2)) ,
(29-62)

where (u, v) ∈ [−π, π]× [−1, 1]. Verify that Stokes’ Theorem is fulfilled for the vector field
V = (−y , x , 1) over the surface Fr with the given boundary ∂Fr, see Figure 29.10: Show
explicitly that: ∫

F
Curl(V) · nF dµ =

∫
∂F

V · e∂F dµ = −32 . (29-63)

Figure 29.10: A Möbius strip in a vector field V(x, y, z) = (−y, x, 1) (in the middle) and the
vector field’s rotation vector field Curl(V)(x, y, z) = (0, 0, 2).

http://www-history.mcs.st-and.ac.uk/Mathematicians/Mobius.html
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Exercise 29.16

Now let Gr denote the same Möbius strip as in Exercise 29.15:

Gr : r(u, v)

= (2 cos(u) + v cos(u/2) cos(u) , 2 sin(u) + v cos(u/2) sin(u) , v sin(u/2)) ,
(29-64)

but now with a somewhat modified parametric region:

(u, v) ∈ [0, 2π]× [−1, 1] . (29-65)

Verify that Stokes’ Theorem is fulfilled for the vector field V = (−y , x , 1) over the surface
Gr with the given boundary ∂Gr: Show explicitly that:∫

Gr

Curl(V) · nG dµ =
∫

∂Gr

V · e∂G dµ = 0 . (29-66)

Exercise 29.17

Explain the difference between the two results (−32 and 0), that are obtained in (29-63) and
(29-66), respectively. Hint: Keep an eye on the normal vector field nF.

Which values of the curl flux and circulation are achieved by changing intervals of the param-
eterization, i.e. only by using the following parametric intervals for different α ∈ R:

(u, v) ∈ [−π + α, π + α]× [−1, 1] ? (29-67)

29.4 Stokes’ Theorem in the Plane

Plane regions, i.e. regions in the (x, y) plane, can be parameterized like this:

Fr : r(u, v) = (x(u, v), y(u, v), 0) ∈ R3 , (u, v) ∈ D = [a, b]× [c, d] ⊂ R2 .
(29-68)

A plane region has a particularly simple unit normal vector field in (x, y, z) space, i.e.
when we consider the plane region as a surface in this 3D space, that coincidently lies



eNote 29 29.4 STOKES’ THEOREM IN THE PLANE 23

Figure 29.11: The restriction of the vector field Curl(V)(x, y, z) = (0, 0, 2) to a piece of the
Möbius strip, the boundary of the strip, and the vector field V(x, y, z) = (−y, x, 1) restricted to
the boundary.

entirely in the (x, y) plane: nF = (0, 0, 1).

With respect to the boundary of the plane region we repeat the notation from section
29.2.1: The boundary ∂Fr of Fr appears by using the vector function r on the four straight
line segments constituting the boundary ∂D of the rectangular parametric region D =
[a, b] × [c, d]. We parameterize all of ∂D at once by using a parameter θ and a vector
function d:

∂D : d(θ) = (u(θ), v(θ)) ∈ ∂D ⊂ R2 , θ ∈ I ⊂ R ,

where u(θ) and v(θ) are only piecewise differentiable functions of θ. E.g. they can be
chosen as linear functions of θ for each of the four line segments that constitute ∂D.

The boundary of Fr is then

∂Fr : b(θ) = r(d(θ)) = r(u(θ), v(θ)) ∈ R2 ⊂ R3 , θ ∈ I = [0, T] ⊂ R . (29-69)

Now let V(x, y, z) = (V1(x, y, z), V2(x, y, z), V3(x, y, z)) denote an arbitrary vector field
in (x, y, z) space, then we have the following consequence of Stokes’ Theorem:
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Theorem 29.18 Stokes’ Theorem in the Plane

Using the notation above it applies that:∫
Fr

Curl(V) · nF dµ =
∫

∂F
V · e∂F dµ∫

Fr
Curl(V) · (0, 0, 1) dµ =

∫
∂F

(V1, V2, V3) · e∂F dµ∫
Fr

Curl(V) · (0, 0, 1) dµ =
∫

I
(V1, V2, V3) · b′(θ)dθ∫

Fr

(
∂V2

∂x
− ∂V1

∂y

)
dµ =

∫ T

0

(
V1b′1(θ) + V2b′2(θ)

)
dθ ,

(29-70)

and thus∫ d

c

∫ b

a

(
∂V2

∂x
− ∂V1

∂y

)
Jacobianr(u, v) du dv =

∫ T

0

(
V1b′1(θ) + V2b′2(θ)

)
dθ .

(29-71)

Remark 29.19

We see that the third coordinate function V3(x, y, z) of the vector field does not play
a role in the theorem. Therefore the theorem is about vector functions in the plane:
V(x, y) = (V1(x, y), V2(x, y)) . We illustrate with a detailed - but simple - example
below.

Example 29.20 Stokes’ Theorem in the Plane

Let V(x, y) = (−y, x) and r(u, v) = (3u, 4v), u ∈ [a, b], v ∈ [c, d], then we get:
Jacobianr(u, v) = 12 and ∂V2

∂x − ∂V1
∂y = 2 such that the left-hand side in Equation (29-71)

gives: ∫ d

c

∫ b

a

(
∂V2

∂x
− ∂V1

∂y

)
Jacobianr(u, v) du dv

=
∫ d

c

∫ b

a
2 · 12 du dv

= 24(b − a)(d − c) .

(29-72)

The right-hand side in Equation (29-71) shall give the same value.
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We determine the value of the right-hand side by dividing the boundary of Fr into four
straight components and by computing the tangential line integral of V along every compo-
nent, while we in each case see to it that the orientation (parameterization) of the component
follows the statement that is made explicit in Stokes’ Theorem.

We start by putting T = 2(b− a) + 2(d− c), i.e. T is the total circumference of the parametric
region D. The boundary of D we can then parameterize in the following way:

d(θ) = (a + θ , 0) for θ ∈ [0 , b − a]

d(θ) = (b , c + θ) for θ ∈ [b − a , b − a + d − c]

d(θ) = (b − θ , d) for θ ∈ [b − a + d − c , 2(b − a) + d − c]

d(θ) = (a , d − θ) for θ ∈ [2(b − a) + d − c , 2(b − a) + 2(d − c)] .

(29-73)

The boundary of Fr we then get in the following form:

b(θ) = (3(a + θ) , 0) for θ ∈ [0 , b − a]

b(θ) = (3b , 4(c + θ)) for θ ∈ [b − a , b − a + d − c]

b(θ) = (3(b − θ) , 4d) for θ ∈ [b − a + d − c , 2(b − a) + d − c]

b(θ) = (3a , 4(d − θ)) for θ ∈ [2(b − a) + d − c , 2(b − a) + 2(d − c)] ,

(29-74)

and thus:
b′(θ) = (3 , 0) for θ ∈ [0 , b − a]

b′(θ) = (0 , 4) for θ ∈ [b − a , b − a + d − c]

b′(θ) = (−3 , 0) for θ ∈ [b − a + d − c , 2(b − a) + d − c]

b′(θ) = (0 , −4) for θ ∈ [2(b − a) + d − c , 2(b − a) + 2(d − c)] .

(29-75)

Now we can compute the right-hand side in Equation (29-71) as the sum of the four terms that
come from the four components of the boundary curve. E.g. for the first line segment in the
boundary curve, parallel to the x−axis and with y = 4c constant we have (for θ ∈ [0, b − a])
b′1(θ) = 3, b′2(θ) = 0, V1(x, y) = y = b2(u, v) = 4v = 4c and similarly for the other 3
contributions (see Figures 29.12 and 29.13):∫ T

0
V1b′1(θ) + V2b′2(θ) dθ =∫ b−a

0
12c dθ

+
∫ b−a+d−c

b−a
12b dθ

+
∫ 2(b−a)+d−c

b−a+d−c
12d dθ

+
∫ 2(b−a)+2(d−c)

2(b−a)+d−c
12a dθ

=

12c(b − a)

+ 12b(d − c)

+ 12d(b − a)

+ 12a(d − c)

=

24(b − a)(d − c) ,

(29-76)



eNote 29 29.4 STOKES’ THEOREM IN THE PLANE 26

in accordance with the result in Equation (29-72), such that the general Equation (29-71)
hereby is verified in this case.

Figure 29.12: A 3D version of Example 29.20. The vector field V(x, y) = (−y, x, 0) has the
curl vector field (0, 0, 2). Here a square is chosen with the parametric representation r(u, v) =

(3u, 4v, 0) , u ∈ [a, b], v ∈ [c, d], a = −1/3, b = 1/3, c = −1/4 and d = 1/4.

Figure 29.13: Statement of the flux of the vector field Curl(V(x, y, z)) = (0, 0, 2) through the
square in the (x, y) plane and corresponding circulation of the vector field V(x, y, z) = (−y, x, 0)
along the square boundary curve.
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29.5 Summary

We have seen here that the flux of a vector field Curl(V)(x, y, z) through a surface can
be calculated as the circulation of V(x, y, z) along the boundary curve to the surface –
with suitable orientation.

• Let Fr denote a smooth parameterized surface with the boundary curve ∂Fr and
the unit normal vector field nF and let V be a smooth vector field in R3. Then
Stokes’ Theorem expresses the following identity∫

F
Curl(V) · nF dµ =

∫
∂F

V · e∂F dµ . (29-77)

In computing the right-hand side it is important (in order to get the correct sign)
that the orientation of the boundary is chosen such that the cross product e∂F × nF
points away from the surface along the boundary.

• Alternatively Stokes’ Theorem can be expressed like this: The flux of the curl of
the vector field V through the surface Fr is equal to the circulation of the vector
field along the closed boundary curve of the surface segment ∂F:

Flux(Curl(V), Fr) = Cirk(V, ∂F) . (29-78)

• The total curl of a vector field in a spatial region can similarly be computed as
a surface integral over the total surface of the region: Let Ω be a spatial region
with the boundary ∂Ω and outward-pointing unit normal vector field n∂Ω on ∂Ω.
Then for every smooth vector field V(x, y, z) it applies that:∫

Ω
Curl(V)dµ =

∫
∂Ω

n∂Ω × V dµ = Tors(V, ∂Ω) . (29-79)
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