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eNote 28

Gauss’ Divergence Theorem

In this eNote we will use flow curves of vector fields to investigate how the surface of a spatial
region is deformed with the flow and thus reflects a change in the volume of the region that is
bounded by the surface. We shall need to know the analysis of vector fields from eNote 26
together with surface and volume integrals from eNote 25. We shall see that the divergence is
the local ’motor’ for volume change. Therefore if we integrate the divergence across the whole
spatial region we get the total instantaneous volumetric expansion (with sign). If the vector
field is everywhere exploding (divergence positive) then the volume of every spatial region
increases; if the vector field is everywhere imploding (divergence negative) then the volume of
every spatial region flowing with a vector field decreases.
Alternatively one can keep an eye on whether the surface of a spatial region is locally expanding
or locally contracting with respect to the spatial region. This is exactly what we do with the
orthogonal surface integral of the vector field with respect to the surface – an integral which is
also called the flux.
By this we have two possibilities for computation of the expansion or contraction of a given
spatial region when it flows along the flow curves of the vector field. And they yield the exact
same result; this is the content of Gauss’ divergence theorem.
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28.1 The Orthogonal Surface Integral, the Flux

Let V(x, y, z) be a smooth vector field in (x, y, z) space, see eNote 26, and let Fr denote a
smooth parameterized surface:

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) , (u, v) ∈ [a, b]× [c, d] . (28-1)

As with the construction of the line integrals in eNote 27 we then have at every point
on the surface two well-defined vectors, on the one hand the value of the vector field at
the point, V(r(u, v)), and on the other hand the normal vector r′u(u, v)× r′v(u, v) to the
surface at the point. It is by using these two vectors that we construct the flux of the
vector field through the surface.

The orthogonal surface integral of V(x, y, z) along a given parameterized surface Fr – also
called the flux of V(x, y, z) through Fr – is the surface integral of the projection (with
sign) of V(r(u, v)) on the normal to the surface represented by the standard unit vector
nF that is proportional to and has the same direction as the cross product NF(u, v) =
r′u(u, v)× r′v(u, v).

Definition 28.1 The Flux of a Vector Field

The orthogonal surface integral of the vector field V(x, y, z) along a parameterized
surface Fr , i.e. the flux of the vector field through the surface, is defined by

Flux(V, Fr) =
∫

Fr
V · nF dµ . (28-2)

The integrand in the surface integral that gives the flux is thus given by the scalar prod-
uct

f (r(u, v)) = V(r(u, v)) · nF(u, v) , (28-3)

where nF(u, v) is defined by

nF(u, v) =

{
r′u(u, v)× r′v(u, v)/∥r′u(u, v)× r′v(u, v)∥ as long as r′u(u, v)× r′v(u, v) ̸= 0
0 if r′u(u, v)× r′v(u, v) = 0

(28-4)
Therefore the flux of V(x, y, z) through Fr in the direction nF is relatively simple to
compute - we need not first find the length of r′u(u, v)× r′v(u, v) (cf. the reduction of the
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tangential line integral):

Flux(V, Fr) =
∫

Fr
V · nF dµ

=
∫ d

c

∫ b

a
(V(r(u, v)) · nF(u, v)) Jacobianr(u, v)du dv

=
∫ d

c

∫ b

a
(V(r(u, v)) · nF(u, v)) ∥r′u(u, v)× r′v(u, v)∥du dv

=
∫ d

c

∫ b

a
V(r(u, v)) · (r′u(u, v)× r′v(u, v))du dv

=
∫ d

c

∫ b

a
V(r(u, v)) · NF(u, v) du dv .

(28-5)

Note that the last integrand in (28-5) is continuous and thus integrable, even
though this is not evident from the definition, because the vector field nF(u, v)
is not necessarily continuous - unless r(u, v) is a regular parametric represen-
tation.

We thus have a simple expression for flux calculations:

Theorem 28.2 The Flux, the Orthogonal Surface Integral

The orthogonal surface integral of V(x, y, z) over the surface Fr, that is the flux of
V(x, y, z) through Fr, is calculated like this:

Flux(V, Fr) =
∫ d

c

∫ b

a
V(r(u, v)) · (r′u(u, v)× r′v(u, v))du dv

=
∫ d

c

∫ b

a
V(r(u, v)) · NF(u, v) du dv .

(28-6)

Note that if a surface Fr is parameterized by another parametric representation
F̂r̂ that gives the opposite standard unit normal vector nF̂ at every point on the
surface: nF̂(û, v̂) = −nF(u, v), where r(u, v) = r̂(û, v̂), then the flux changes
sign:

Flux(V, F̂r̂) = − Flux(V, Fr) . (28-7)
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The orthogonal line integral is briefly introduced as a dual concept in relation
to the more natural tangential line integral in eNote 27. The dual concept in
relation to the natural orthogonal surface integral introduced above is the tan-
gential surface integral of a given vector field over a given surface.

Definition 28.3 The Tangential Surface Integral

In analogy to the orthogonal surface integral, the flux, we define the tangential sur-
face integral, which we will denote Tan(V, Fr) of V over the surface Fr, by projecting
V(r(u, v)) perpendicularly onto the tangent plane to Fr (spanned by r′u(u, v) and
r′v(u, v) at the point r(u, v)) and then finding the surface integral of the length of this
projection (as a function of (u, v)).

Figure 28.1: This segment of a spherical surface is given by the parametric representation
r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) , u ∈ [0, π

3 ] , v ∈ [−π, π] . The vector field is
given by V(x, y, z) = (0, 1, 0).

Exercise 28.4

Concerning the figures 28.1 and 28.2:

1. Determine the tangential surface integral of each of the vector fields V(x, y, z) =

(0, 1, 0) and V(x, y, z) = (1/
√

5, 0,−2/
√

5) along the spherical segment.

2. Determine the respective orthogonal surface integrals (the fluxes) of each of the vector
fields through the spherical segment.
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Figure 28.2: Same spherical segment as in Figure 28.1. The vector field is here given by
V(x, y, z) = (1, 0,−2)/

√
5).

Exercise 28.5 A Sun Collector Problem

A sun collector roof has the form of part of the cylinder with the equation x2 +
(
z − 1

2

)2
= 1 ,

viz. the part that lies above the (x, y)−plane and that is bounded by −1 ≤ y ≤ 1 (as usual
we assume that the (x, y)−plane is horizontal and that ’above’ means z ≥ 0), see Figure 28.3.

• Let us – to simplify somewhat – assume that the sun radiates from a cloud-free sky
onto the sun collector roof at a given point in time t along the unit vector field in 3D
space that at time t is parallel to the vector V = V(t) = (0, − cos(t), − sin(t)) where
t ∈ [0, π] .

• The sun rises at time t = 0 and at this point in time sends horizontal rays parallel to
the y-axis in the direction (0,−1, 0) . At noon ( t = π

2 ) the rays are vertical and parallel
to the z-axis in the direction (0, 0,−1) . At time t = π the sun settles but just before
this happens it radiates (almost) horizontal rays parallel to the y-axis in the direction
(0, 1, 0) .

• The energy uptake of the sun collector per area unit and per time unit for a given
position of the sun collector is assumed to be equal to the scalar product V · n between
the sun radiation vector field V and the roof’s inward unit normal vector to the surface
of the roof n at the position. Note that the inward normal field n is not necessarily
equal to nF , this of course depending on the chosen parametric representation of the
roof.

• Question A:
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1. Argue the assumption that the energy uptake is equal to the scalar product V · n,
and note that energy uptake naturally only happens whenever this scalar product
is positive.

2. What is the energy uptake of the sun collector per unit time at a given point in
time, t , during a day?

3. What is the total energy uptake of the sun collector during a day?

• Question B: Suppose that we rotate the cylindrical roof π/2 counter-clockwise (or
clockwise) about the z−axis.

1. What is the rotated sun collector’s energy uptake per unit time at a given point in
time, t , of the day?

2. What is the total energy uptake of the rotated sun collector in one ’day’?

• Question C: Suppose we rotate the original cylindric roof from question A the angle θ

counter-clockwise (or clockwise) about the z−axis, where θ ∈ [ 0, π/2].

1. Which of these sun collector roofs gives the largest total energy uptake per day?

Figure 28.3: The sun collector roof that is referred to in Exercise 28.5.

28.2 Motivation for the Flux via Flow Expansion

The integral curves, the flow curves, of a given vector field V(x, y, z) can be used to
’push’ a given surface Fr in the direction of the vector field and with a local speed that
is given by the length of the vector field at every point. In other words: every point on
the surface flows for a certain time along the flow curves of the vector field.

In this way the surface runs through – the surface ’sweeps’ through – a spatial region
Ωr(t) which at any instant in time t (the time which we let the surface flow along the
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vector field) has a volume Vol±(Ωr(t)) = Vol±(t). This volume is clearly 0 for t = 0
and thereafter it is small if the vector field is almost tangential to the surface and large
if the vector field is perpendicular to the surface in the same direction as the standard
normal vector field to the surface. If the vector field points in the opposite direction of
the standard normal vector field we will calculate the volume with the corresponding
local contribution to the volume as being negative – hence the designation Vol±(Ωr(t)).

See the Figures 28.4, 28.5 and 28.7 together with the Examples 28.7 and 28.8 where it is
illustrated how the Jacobian function (without numerical sign) can be applied for the
calculation of local contributions to the volume (with sign).

The following fundamental relation between the flux and the derivative of the volume
function at the time t = 0 applies:

Theorem 28.6 The Flux as the Derivative of the Volume in Surface Flows

Let Ωr(t) designate the spatial region that is swept through when the surface seg-
ment Fr flows for time t with the flow curves through the point of the surface. Then
the following relation applies, where Vol±(Ωr(t)) denotes the signed calculated vol-
ume of the region, that is, in relation to the chosen standard normal vector nF(u, v)
for Fr.

Flux(V, Fr) =
d
dt |t=0

Vol±(Ωr(t)) = Vol′±(0) . (28-8)

It is this property (in Theorem 28.6) that motivates the name flux: Locally the
flux is a measure for the (with sign calculated) volume growth rate that is in-
stantaneously generated by the flow of the surface along the integral curves of
the vector field through the points of the surface. The sign is positive where the
vector field forms an acute angle with the standard normal vector field nF(u, v)
and negative where that angle is obtuse. See Figures 28.7 and 28.4.
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Proof

We assume as usual that the surface Fr is given by a smooth parametric representation:

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) , (u, v) ∈ [a, b]× [c, d] . (28-9)

The flow curve of V(x, y, z) through the surface point r(u, v) is called r̃(u, v, t). The region
ΩFr(t) in (x, y, z) space that is swept by the surface while it flows with the flow curves until
the time t is therefore given by the parametric representation:

ΩFr(t) : r̃(u, v, w) , w ∈ [0, t] , u ∈ [a, b] , v ∈ [c, d] . (28-10)

For the determination of the volume (signed) of this region we use Taylor’s limit formula to
the first order with the development point w = 0 for each of the smooth vector functions
r̃′u(u, v, w), r̃′v(u, v, w) and r̃′w(u, v, w) considered to be functions of w for every fixed (u, v):

r̃′u(u, v, w) = r̃′u(u, v, 0) + ε(u,v)(w) = r′u(u, v) + ε(u,v)(w)

r̃′v(u, v, w) = r̃′v(u, v, 0) + ε(u,v)(w) = r′v(u, v) + ε(u,v)(w)

r̃′w(u, v, w) = r̃′w(u, v, 0) + ε(u,v)(w) = V(r(u, v)) + ε(u,v)(w) ,

(28-11)

so that the Jacobian function for the volume calculation – signed – looks like this:

Jacobianr̃(u, v, w) =
(
r̃′u(u, v, w)× r̃′v(u, v, w)

)
· r̃′w(u, v, w)

=
(
r′u(u, v)× r′v(u, v)

)
· V(r(u, v)) + ε(u,v)(w)

= NF(u, v) · V(r(u, v)) + ε(u,v)(w) .

(28-12)

Here we see that when w tends towards 0 we obtain precisely the wanted sign of the Jacobian
function, which is the local contribution l (the integrand) to the volume computation: The
Jacobian function is positive close to the surface when the vector field V(r(u, v)) on the surface
points in the same direction as the standard normal vector NF(u, v), and the Jacobian
function is negative close to the surface when the vector field V(r(u, v)) on the surface points in
the opposite direction of the normal vector NF(u, v).

The volume Vol±(Ωr(t)) (computed with sign) is now for sufficiently small flow times t given
by:

Vol±(Ωr(t)) =
∫ t

0

∫ d

c

∫ b

a
Jacobianr̃(u, v, w) du dv dw

=
∫ t

0

∫ d

c

∫ b

a

(
NF(u, v) · V(r(u, v)) + ε(u,v)(w)

)
du dv dw

=
∫ t

0

((∫ d

c

∫ b

a
NF(u, v) · V(r(u, v)) du dv

)
+

(∫ d

c

∫ b

a
ε(u,v)(w) du dv

))
dw

=
∫ t

0
Flux(V, Fr) dw +

∫ t

0
ε(u,v)(w) dw ,

(28-13)
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from which we read:
d
dt

Vol±(Ωr(t)) = Flux(V, Fr) + ε(t) (28-14)

and thus
Vol′±(0) = Flux(V, Fr) . (28-15)

■

Example 28.7 Flow of a Circular Disc by Parallel Displacement

We look at a circular disc Fr in the (x, y) plane. The radius of the disc is 1 and the centre is at
(0, 0, 0):

Fr : r(u, v) = (u · cos(v), u · sin(v), 0) , (u, v) ∈ [0, 1]× [−π, π] . (28-16)

The standard normal vector to the circular disc is given by the parametric representation:

NF(u, v) = ru(u, v)× rv(u, v)

= (cos(v), sin(v), 0)× (−u · sin(v), u · cos(v), 0)

= (0, 0, u) .

(28-17)

The unit normal vector field of the circular disc with this circular representation is the con-
stant vector:

nF = (0, 0, 1) . (28-18)

Now let V(x, y, z) denote the vector field:

V(x, y, z) = (α, β, γ) , (28-19)

where α, β and γ are constants. Then in this case the flux is given by:

Flux(V, Fr) =
∫ π

−π

∫ 1

0
V(r(u, v)) · NF(u, v) du dv

=
∫ π

−π

∫ 1

0
(α, β, γ) · (0, 0, u) du dv

=
∫ π

−π

∫ 1

0
u · γ du dv

= γ · π ,

(28-20)

Note that the flux is negative for γ < 0 and positive for γ > 0, that is, the sign depends on
whether the vector field points in the direction of the standard normal vector of the circular
disc or in the opposite direction.
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Now we will in a similar way determine the volume of the spatial region that the flow of
the circular disc ’sweeps through’ by following the integral curves, thus demonstrating the
content – and validity – of Theorem 28.6:

The flow curve r(u, v, t) of V(x, y, z) through the point r(u, v) is a straight line through the
point, viz. the one that has the constant tangent vector (α, β, γ):

r(u, v, t) = r(u, v) + t · (α, β, γ)

= (u · cos(v), u · sin(v), 0) + t · (α, β, γ) , t ∈ [0, ∞[ .
(28-21)

It is seen that
r′t(u, v, t) = (α, β, γ) = V(r(u, v, t)) , (28-22)

such that the integral curve condition is exactly fulfilled.

The spatial region ΩFr(t), which the circular disc forms by flowing with the flow curves of
V(x, y, z) until time t, is thereby given by a parametric representation that is readily seen
from the parametric representation of the flow curve through the points of the surface:

ΩFr(t) : r = r(u, v, w) , w ∈ [0, t] , (u, v) ∈ [0, 1]× [−π, π] . (28-23)

The volume of this region can be found by the standard method via the Jacobian function,
which we use here with sign in order to determine the volume with sign in relation to the
normal vector:

Jacobianr(u, v, w) = (ru(u, v, w)× rv(u, v, w)) · rw(u, v, w)

= NF(u, v) · rw(u, v, w)

= (cos(v), sin(v), 0)× (−u · sin(v), u · cos(v), 0) · (α, β, γ)

= (0, 0, u) · (α, β, γ)

= u · γ ,

(28-24)

where we have used that in this simple actual case, where the vector field moves the circular
disc in the direction of the vector field, it applies that: (ru(u, v, w)× rv(u, v, w)) = NF(u, v),
which is independent of w. The volume with sign of ΩFr(t) into the normal vector field (0, 0, 1)
of the circular disc is therefore

Vol±(t) =
∫ t

0

∫ π

−π

∫ 1

0
u · γ du dv dw = t · γ · π . (28-25)

From this we get
Vol′±(0) = γ · π , (28-26)

that is the same value as the Flux(V, Fr) found above. Thus we have verified Theorem 28.6.
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If the vector field (α, β, γ) is in the same direction as the standard normal to the surface (i.e. if
γ > 0), both the flux, the volume Vol±(t), and the volume derivative Vol′±(0) are positive; if
the vector field (α, β, γ) is in the opposite direction in relation to the standard normal (i.e. if
γ < 0), then both the flux, the volume (with sign) Vol±(t) and the volume derivative Vol′±(0)
are negative.

Figure 28.4: A simple, constant vector field and the corresponding short-time flow of a circular
disc. In relation to the normal (0, 0, 1) of the circular disc the flux and the volumetric increase
are positive.

Figure 28.5: A simple, constant vector field and the corresponding short-time flow of a circular
disc. The flux and the volumetric increase are 0.

Example 28.8 Flow of a Circular Disc with Rotation

We consider as in Example 28.7 the circular disc Fr in the (x, y) plane. The disc has radius 1
and centre at (0, 0, 0):

Fr : r(u, v) = (u · cos(v), u · sin(v), 0) , (u, v) ∈ [0, 1]× [−π, π] . (28-27)
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Here we will let the circular disc flow with the flow curves of the following rotating vector
field:

V(x, y, z) = (−z, 0, x) . (28-28)

The flow curve r̃(u, v, t) = (x(t), y(t), z(t)) of this vector field through a circular disc point
(x0, y0, z0) = r(u, v) is given as the solution to the system of first-order differential equations: x′(t)

y′(t)
z′(t)

 = (V(x(t), y(t), z(t)))⊤ =

 −z(t)
0

x(t)

 (28-29)

with the initial condition (x(0), y(0), z(0) = (x0, y0, z0) = r(u, v). The system of coupled
differential equations has the general solution, see the solution methods in eNote 17: x(t)

y(t)
z(t)

 =

 c1 · cos(t)− c3 · sin(t)
c2

c1 · sin(t) + c3 · cos(t)

 (28-30)

where c1, c2 and c3, are arbitrary constants. The special solutions, the flow curves r̃(u, v, t)
through the circular disc points (x0, y0, z0) = r(u, v) = (u · cos(v), u · sin(v), 0) are then given
by the following parameterized circles in (x, y, z) space:

(̃r(u, v, t))⊤ =

 x0 · cos(t)− z0 · sin(t)
y0

x0 · sin(t) + y0 · cos(t)

 =

 u · cos(v) · cos(t)
u · sin(v)

u · cos(v) · sin(t)

 . (28-31)

The swept spatial region ΩFr(t) is already parameterized in this way:

ΩFr(t) : r̃(u, v, w) = (u · cos(v) · cos(w), u · sin(v), u · cos(v) · sin(w)) , (28-32)

where w ∈ [0, t], u ∈ [0, 1], and v ∈ [−π, π]. Cf. Figure 28.6.

The flux of the vector field through the circular disc is expected to be 0 because the region
that the circular disc sweeps through during the rotation has the volume 0 when the volume
is signed: One half of the region is seen to be above the circular disc (in the direction of (0, 0, 1))
and the other half below the circular disc (in the direction of (0, 0,−1)); the two halves of the
swept region have volumes with opposite signs and therefore they cancel each other. We
compute the flux of the vector field through the circular disc:

Flux(V, Fr) =
∫ π

−π

∫ 1

0
V(r(u, v)) · NF(u, v) du dv

=
∫ π

−π

∫ 1

0
(0, 0, u · cos(v)) · (0, 0, u) du dv

=
∫ π

−π

∫ 1

0
u2 · cos(v) du dv

=
∫ π

−π

1
3
· cos(v) dv

=
1
3
·
∫ π

−π
cos(v) dv

=
1
3
· [sin(v)]π−π

= 0 .

(28-33)
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In order to illustrate once more the general volume calculation (with sign) and again verify
Theorem 28.6 through concrete computations, we will show that the signed calculated vol-
ume of the region ΩFr(t) being swept by the circular disc by the flow really is 0. The signed
calculated Jacobian function is determined by:

Jacobianr̃(u, v, w) = u2 · cos(v) . (28-34)

such that the signed volume of ΩFr(t) is:

Vol±(ΩFr(t)) =
∫ t

0

∫ π

−π

∫ 1

0
u2 · cos(v) du dv dw

=
1
3
·
∫ t

0

∫ π

−π
· cos(v) dv dw

=
1
3
· t · [sin(v)]π−π

= 0 .

(28-35)

Note that the ordinary volume Vol(ΩFr(t)) of ΩFr(t) is of course not 0, but:

Vol(ΩFr(t)) =
∫ t

0

∫ π

−π

∫ 1

0
u2 · | cos(v)| du dv dw

=
1
3
·
∫ t

0

∫ π

−π
| cos(v)| dv dw

=
1
3
· t · 4 · [sin(v)]π/2

0

=
4
3
· t .

(28-36)

Figure 28.6: A rotating vector field and corresponding short-time flow of a circular disc. The
flux and the volume increase are both 0.
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Example 28.9 Flux Through an Elliptic Paraboloid

A vector field V(x, y, z) and an elliptic paraboloid Fr are given by

r(u, v) =
(

2 · u · cos(v), 2 · u · sin(v), 2 · u2 · (cos2(v) +
1
9
· sin2(v))

)
, (28-37)

where (u, v) ∈ [0, 1/2]× [−π, π] and V(x, y, z) = (−y, x, 1).

For the determination of the flux Flux(V, Fr) of V(x, y, z) through Fr we have

ru(u, v)× rv(u, v) =
(
−8 · u2 · cos(v), −8

9
· u2 · sin(v), 4 · u)

)
(28-38)

V(r(u, v)) = (−2 · u · sin(v), 2 · u · cos(v), 1) . (28-39)

such that:

Flux(V, Fr) =
∫ π

−π

∫ 1/2

0
V(r(u, v)) · (ru(u, v)× rv(u, v)) du dv

=
∫ π

−π

∫ 1/2

0

4
9
· u ·

(
32 · u2 · cos(v) · sin(v) + 9

)
du dv

= · · ·
= π .

(28-40)

Figure 28.7: A rotating vector field, and corresponding short-time flow of an elliptic paraboloid.
In relation to the normal to the circular disc the flux and the volume increase are positive. See
Example 28.9.
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As we shall see in the next paragraph the total flux of a given vector field through the
surface of a given spatial region Ωr is particularly interesting. The surface may well be
composed of finitely many smooth surface segments, e.g. like the surface of a polyhe-
dron. The only convention that we shall stick to is that it is always the outward-pointing
normal (in relation to the spatial region) we shall use everywhere on the surface when
computing the flux.

Example 28.10 Flux Through the Surface of a Solid Cylinder

We will illustrate the flux calculation through a total surface of a spatial region by computing
the flux of the simple vector field

V(x, y, z) = ( f (x), 0, 0) , (x, y, z) ∈ R3 , (28-41)

where f (x) is a smooth function of x. We also choose a very simple region Ω in (x, y, z)
space, viz. the solid cylinder with radius 1/2 and the x-axis as an axis of symmetry together
with the corresponding x-interval x ∈ [0, 1]. See Figure 28.8.

The surface, the boundary, of the cylinder, which we will denote by F = ∂Ω, consists of three
parts: One is the cylindrical curved surface and the two others are the two circular discs at
its ends. Since the vector field is parallel to the cylindrical curved part of the surface there
will be no flux contribution from this (!). E.g. the only contribution to the flux through the
total surface of the solid cylinder derives from the circular discs at the two ends.

Since the vector field is perpendicular to both of these discs the flux through the end circular
disc at x = 0 is given by: − f (0) · π

4 , since the outward pointing unit normal for that circular
disc is (−1, 0, 0) and the flux through the end circular disc at x = 1 is similarly given by:
f (1) · π

4 , since the unit normal there is (1, 0, 0).

The total flux of V(x, y, z) out through the surface ∂Ω of the solid cylinder is therefore:

Flux(V, ∂Ω) = ( f (1)− f (0)) · π

4
. (28-42)

I.e.: If f (x) (and thus the vector field) is larger at x = 0 than at x = 1, then the total flux out
through the cylindrical surface is negative.
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Figure 28.8: A vector field that is parallel to the x-axis and an image after a short time flow.
After very long time of flowing the whole cylinder squished together to a circular disc at x = 2.
See Example 28.10.

The flux through the two end discs on the cylinder in Figure 28.8 depends on
the value of the vector field at these end points – see Example 28.10. Since
the volume of the cylinder is indicated to reduced by the flow this inspection
gives rise to the supposition that the total flux out through the two end discs
is negative. This is in accordance with the fact that the vector field for the
case shown is V(x, y, z) = ( f (x), 0, 0) = (2 − x, 0, 0) which according to the
computation in example 28.10 gives the total flux:

Flux(V, ∂Ω) = (1 − 2) · π

4
= −π

4
. (28-43)

This means that there is a larger volume deformation into the cylinder at x =
0 than there is volume deformation out of the cylinder at x = 1. The time
derivative of the volume by the flow is negative such that the cylinder actually
gets smaller when all points follow their respective flow curves. This is in fact
true not only for small t-values but for all t > 0, such that the cylinder ends up
collapsed, totally compressed to a flat circular disc at x = 2 at the time t = ∞ .

28.3 Motivation for the Divergence via Flow Expansion

Let us consider a solid sphere Kρ in (x, y, z) space with radius ρ and centre at (0, 0, 0)
and let us expand this sphere by letting all points flow with the flow curves of the ex-
plosion vector field V(x, y, z) = (x, y, z).
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The solid sphere has the parametric representation:

Kρ : r(u, v, w) = (u · sin(v) · cos(w), u · sin(v) · sin(w), u · cos(v)) , (28-44)

where (u, v, w) ∈ [0, ρ]× [0, π]× [−π, π].

According to the flow solutions to this explosion vector field the radius of the sphere
grows by the factor eT, where T is the flow time. We see this in the following way:

The general flow curves of the vector field are readily found by solving the system of
differential equations: x′(t)

y′(t)
z′(t)

 = (V(x(t), y(t), z(t)))⊤ =

 x(t)
y(t)
z(t)

 . (28-45)

The general solution is here:  x(t)
y(t)
z(t)

 =

 c1 · et

c2 · et

c3 · et

 (28-46)

where c1, c2, og c3 are arbitrary constants.

The special solutions, the flow curves r̃(u, v, w, t) through points of the sphere (x0, y0, z0) =
r(u, v, w) = (u · sin(v) · cos(w), u · sin(v) · sin(w), u · cos(v)), are then given by the fol-
lowing parameterized lines in (x, y, z) space:

(̃r(u, v, w, t))⊤ =

 x0 · et

y0 · et

z0 · et

 =

 et · (u · sin(v) · cos(w))
et · (u · sin(v) · sin(w))

et · (u · cos(v))

 . (28-47)

These lines and their parametric representations give the flow curve through every point
in the solid sphere.

The spatial surface ΩFr(t) that after time t is added to the solid sphere, is thus already
parameterized: We only have to put u = ρ in the flow line parameterizations above. I.e.,
again we find out how the flow of the surface of the sphere contributes to the volume
expansion (calculated with sign):

ΩFr(T) : r̃(ρ, v, w, t) = et · ρ · (cos(v) · cos(w), sin(v), cos(v) · sin(w)) , (28-48)
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where t ∈ [0, T], v ∈ [0, π] and w ∈ [−π, π]. It is seen that r̃(ρ, v, w, T) is a parametric
representation of the exploding sphere’s surface after time T and that it is a sphere with
radius eT · ρ. By flowing with the flow curves of the explosion vector field the original
sphere (with radius ρ at the time t = 0) expands to a sphere that has the radius eT · ρ as
conjectured.

The volume of an exploding sphere at time T is the sum of the two volumes
Vol±(ΩFr(T)) and Vol(Kρ). The first of these is the signed volume of the region
that the sphere’s surface sweeps through during the time T.

The volume of the sphere as a function of the flow time t is thus given by: Vol(ΩFr(t)) +
Vol(Kρ) = Vol(t) = (4 π/3) ρ3 e3t. Therefore the volume of the sphere grows (at time
t = 0) with the differential quotient

d
dt

Vol(t)|t=0
= 4 π ρ3 . (28-49)

This growth in volume we have essentially found by keeping an eye on the expansion
of the solid sphere’s surface ∂Kρ when all the sphere’s points flow along the flow curves
of the vector fields – exactly what we have been going into in the first half of this eNote.

From this we get intuitively that if the scalar product between the vector field V and
the outward-pointing unit normal vector n at a position of the surface is large, then the
local contribution to the volume expansion will be correspondingly large, because the
surface at this position is pushed quickly outwards when it flows with the flow curves
of the vector field.

This might of course mitigated by the fact of the scalar product at other positions on the
surface being negative, such that the surface is pushed inwards at these positions.

In short we see again that the total outward-pointing flux of the vector field through the
surface of the spatial region gives the (signed) volume expansion.

Therefore the corresponding extension of Theorem 28.6 is:
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Theorem 28.11 Total Flux Out through the Surface of a Spatial Field

Let Ωr denote an arbitrary parameterized region in (x, y, z) space with the outward-
pointing unit normal vector field n∂Ω along the surface ∂Ωr .

The surface might be composed of smooth parameterized surface segments as e.g.
the surface of a polyhedron.

Let V(x, y, z) denote an arbitrary smooth vector field in (x, y, z) space.

We let all points in Ωr flow for time t along the flow curves of the vector field
V(x, y, z) .

The signed (in relation to n∂Ω) volume Vol±(t) of the region after this deformation
then has the following differential quotient at time t = 0 :

d
dt

Vol±(t)|t=0
=

∫
∂Ωr

V · n∂Ω dµ = Flux(V, ∂Ωr) . (28-50)

Example 28.12 Explosion of a Solid Sphere

We check the theorem in the case of the exploding sphere: The flux of the explosion vector
field out through the surface of the sphere is simply the area of the surface 4 π ρ2 multiplied
by the scalar product V ·n, because that scalar product in this special case is constant: V ·n =

∥V∥ =
√

x2 + y2 + z2 = ρ . Therefore the total flux 4 π ρ3 is precisely the differential quotient
(at time t = 0) of the volume as a function of the flow time t . Thus we have verified the
theorem for this special case.
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The parameterized spatial regions which we consider usually have a bound-
ary consisting of six surface segments. This means that the computation of
the volume increase of the region by the deformation along the flow curves
requires the computation of six outward-pointing flux contributions – one
contribution for each surface segment.

If two of the six surface segments by a standard parameterization of a spatial
region coincide or coincide partly, then the standard unit normals for the one
surface segment are precisely opposite to the standard unit normals for the
other surface segment where the surface segments coincide, such that corre-
sponding flux contributions cancel!

For an arbitrary smooth vector field in 3D space we can investigate the volume expan-
sion (by flow along the flow curves of the vector field) of a small solid sphere Kρ, that
has its center at a given point, e.g. p = (x0, y0, z0), and radius ρ. We Taylor-expand
the vector field’s coordinate functions V1, V2 and V3, to the first order with the point of
development (x0, y0, z0) and find the outward-pointing flux of the vector field through
the small sphere’s surface ∂Kρ. This flux divided by the volume (4 π/3) ρ3 of the solid
sphere Kρ has a limit value when the radius ρ tends towards 0. See the sketch for this
computation below.

It appears (see below) that this boundary value precisely is the divergence of the vector
field at the point considered! In the light of Theorem 28.11 and equation (28-50) we have
therefore motivated the following interpretation of the divergence:

Theorem 28.13

The divergence of a vector field expresses the volume-relative local flux out through
the surface for the vector field and thereby also the relative local volume growth by the
deformation along the flow curves of the vector field:

Div(V)(x0, y0, z0) = lim
ρ→0

(
1

Vol(Kρ)
Flux(V, ∂Kρ)

)
= lim

ρ→0

(
1

Vol(Kρ)

d
dt

Vol±(t)|t=0

)
.

(28-51)
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Proof

We will only sketch how the divergence appears with the suggested method. We simplify
the presentation in two ways: On the one hand we choose a coordinate system such that
p = (0, 0, 0), and on the other hand we only include the linearization of V(x, y, z) about
(0, 0, 0) (ε-terms from Taylors limit formula for the 3 coordinate functions are not taken into
account). On the other hand the computations are exact for vector fields of the first degree
or less.

The task is to rediscover Div(V) at the point (0, 0, 0) by use of a flux computation. We start
by using the Taylor’s limit formula on V(x, y, z) . It is understood that Vi and the partial
derivatives of Vi are evaluated at the point of development (0, 0, 0) unless otherwise stated.

V(x, y, z) = (V1 + x
∂V1

∂x
+ y

∂V1

∂y
+ z

∂V1

∂z
,

V2 + x
∂V2

∂x
+ y

∂V2

∂y
+ z

∂V2

∂z
,

V3 + x
∂V3

∂x
+ y

∂V3

∂y
+ z

∂V3

∂z
) .

(28-52)

Since the unit normal vector field on the surface of the small solid ρ-sphere Kρ with centre
(0, 0, 0) is given by n = (x/ρ, y/ρ, z/ρ) it follows that the integrand in the flux calculation
is the following:

V(x, y, z) · n =

(
1
ρ

)
( x V1 + x2 ∂V1

∂x
+ xy

∂V1

∂y
+ xz

∂V1

∂z
+

y V2 + yx
∂V2

∂x
+ y2 ∂V2

∂y
+ yz

∂V2

∂z
+

z V3 + zx
∂V3

∂x
+ zy

∂V3

∂y
+ z2 ∂V3

∂z
) .

(28-53)

Now we only have to integrate this expression over the surface of the sphere ∂Kρ and then di-
vide the result by the volume of the sphere Vol(Kρ). Even though this may look complicated
it is in fact fairly simple considering the following identities:

∫
∂Kρ

x dµ =
∫

∂Kρ

y dµ =
∫

∂Kρ

z dµ = 0 ,∫
∂Kρ

x2 dµ =
∫

∂Kρ

y2 dµ =
∫

∂Kρ

z2 dµ = (4 π/3) ρ4 = ρ Vol(Kρ) ,∫
∂Kρ

x y dµ =
∫

∂Kρ

x z dµ =
∫

∂Kρ

z y dµ = 0 .

(28-54)
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From Equation (28-54) now follows e.g. the following contribution to the integral over the
spherical surface ∂Kρ of the right-hand side in Equation (28-53). (Note that ∂V1

∂x (0, 0, 0) is a
constant that can be placed outside the integral symbol.):∫

∂Kρ

(
1
ρ

)
x2 ∂V1

∂x
(0, 0, 0) dµ = Vol(Kρ)

∂V1

∂x
(0, 0, 0) . (28-55)

Naturally we get a total of three such contributions to the integral over the spherical surface
∂Kρ of the right-hand side in (28-53), and since the integral over ∂Kρ of the left-hand side in
Equation (28-53) is exactly the flux Flux(V, ∂Kρ) we therefore have the following identity in
this simplified case:

1
Vol(Kρ)

Flux(V, ∂Kρ) =
1

Vol(Kρ)

∫
∂Kρ

V · n dµ

=
∂V1

∂x
(0, 0, 0) +

∂V2

∂y
(0, 0, 0) +

∂V3

∂z
(0, 0, 0)

= Div(V)(0, 0, 0) .

(28-56)

For general vector fields the corresponding identity only applies in the limit where ρ is very
small (i.e. for ρ → 0), such that the above use of Taylor’s limit formula for V(x, y, z) to the
first order exactly becomes the dominant representative for the vector field inside the sphere
Kρ. For vector fields of the first degree or less, though, the identity (28-56) applies as stated
for all values of ρ. Naturally this is due to the fact that regardless of the value of the radius
ρ the vector field is in this special case represented exactly in all of Kρ by its Taylor’s limit
formula to the first order with the development point at the centre.

By this we have concluded the sketch of the proof for the local determination of divergence
of a vector field and shown the geometrical interpretation in Theorem 28.13.

■

Exercise 28.14

Show the identities in Equation (28-54). In the cases where the integral is 0 this can be shown
by sign and symmetry considerations.

This exposition of the divergence now gives rise to a natural idea pointing in the oppo-
site direction:
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Since the local increase in volume at any point through deformation of a spatial region
along the flow curves of a given vector field is determined by the divergence of the vec-
tor field, then the following is a reasonable supposition: If we integrate the divergence
over a region in 3D space, then we would rather expect the result to be comparable to
the total volume growth of the whole region. That is, the sum of the local volume in-
creases should be roughly equal to the total volume increase.

This is precisely the content of Gauss’ theorem, which we shall now formulate in com-
bination with Theorem 28.11:

28.4 Gauss’ Divergence Theorem

Figure 28.9: Carl Friedrich Gauss. See Biography.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Gauss.html
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Theorem 28.15 Gauss’ Divergence Theorem

Let Ωr denote a spatial region with the bounding surface ∂Ωr and the outward-
pointing unit normal vector field n∂Ω on the boundary surface. For every smooth
vector field V in (x, y, z) space the following applies:

d
dt

Vol±(t)|t=0
=

∫
Ωr

Div(V) dµ =
∫

∂Ωr
V · n∂Ω dµ = Flux(V, ∂Ωr) , (28-57)

where the flux accordingly must be computed with respect to the outward-pointing
unit normal vector field on the boundary of the given spatial region.

Both sides of the following equation, the essence of Gauss’ theorem, can readily be
computed in concrete cases and Gauss’ Theorem thereby verified.∫

Ωr
Div(V) dµ = Flux(V, ∂Ωr) . (28-58)

Here we will work through some examples of such double computations.

In some cases it is much simpler to compute the divergence integral over a
given spatial region than it is to compute the flux of the vector field through the
total surface of the region. If asked to compute the latter you of course instead
compute the former and refer to Gauss’ divergence theorem. Vice versa there
are cases where the flux integral is the simpler one to compute – then of course
one uses the corresponding alternative strategy.

Example 28.16

If the vector field V has the divergence 0 at all points in (x, y, z) space, then every spatial
region that flows with the vector field keeps its volume. The form can of course be largely
changed as time progresses, but the volume is constant. In addition the flux out through the
surface of every fixed spatial region is correspondingly 0.
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Example 28.17

Therefore for the explosion vector field V(x, y, z) = (x, y, z) having the constant diver-
gence Div(V) = 3 , the following applies for an arbitrary spatial region: 3 Vol(Ω) =

Flux(V, ∂Ω) .

Exercise 28.18

Verify (by direct computation) the statement that V(x, y, z) = (x, y, z) in the above example
28.17 for the spatial region consisting of the solid cylinder in Figure 28.8.

Figure 28.10: A vector field that is parallel to the x-axis and the cylinder from Example 28.10.

Example 28.19 The Divergence and the Flux in the Cylinder Example

We will illustrate Gauss’ theorem for the vector field

V(x, y, z) = ( f (x), 0, 0) , (x, y, z) ∈ R3 , (28-59)

where f (x) is a smooth function of x, by computing the integral of the divergence of the
vector field over the solid cylinder with radius 1/2, the x-axis as the axis of symmetry, and
the x-interval x ∈ [0, 1], which we studied in Example 28.10. In that example we found the
total flux of the vector field out through the surface of the cylinder:

Flux(V, ∂Ω) = ( f (1)− f (0)) · π

4
. (28-60)

The total divergence of the vector field in the solid cylinder is as easy to calculate: The local
divergence of V(x, y, z) = ( f (x), 0, 0) at an arbitrary point (x, y, z) is:

Div(V)(x, y, z) = f ′(x) . (28-61)
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The solid cylinder has a parametric representation:

Ωr : r(u, v, w) = (w, u · cos(v), u · sin(v)) , (28-62)

where (u, v, w) ∈ [0, 1/2]× [−π, π]× [0, 1]. The Jacobian function of the parameterization is
then

Jacobianr(u, v, w) = u , (28-63)

such that the total divergence of the vector field is∫
Ωr

Div(V) dµ =
∫ 1

0

∫ π

−π

∫ 1/2

0
f ′(w) · u du dv dw

=
∫ 1

0

∫ π

−π

1
8
· f ′(w) dv dw

=
1
8
·
∫ 1

0
2 · π · f ′(w) dw

=
π

4
·
∫ 1

0
f ′(w) dw

=
π

4
· [ f (w)]w=1

w=0

= ( f (1)− f (0)) · π

4
,

(28-64)

exactly the same result as by using the flux calculation.

Example 28.20 The Vector Field through an Edged Torus

We consider a subset of a solid sphere with radius 1/2, see Figure 28.11. A parametric repre-
sentation of the solid region is given by:

Ωr : r(u, v, w) = (u · sin(v) · cos(w), u · sin(v) · sin(w), u · cos(v)) , (28-65)

where the parameters run through the following bounding intervals:

u ∈
[

1
2

, 1
]

, v ∈
[

π

3
,

2π

3

]
, w ∈ [−π, π] . (28-66)

A vector field in (x, y, z) space is given like this:

V(x, y, z) = (−z, y, x · z) . (28-67)

The task is to determine the total flux of the vector field out through the surface of Ωr. This
is likely to be complicated – the surface has four surface segments that all contribute to the
flux computation. Instead we will compute the integral of the divergence of the vector field
over the spatial region and finally apply Gauss’ divergence theorem.
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The Jacobian function of the stated parameterization of the solid spherical region is:

Jacobianr(u, v, w) = u2 · sin(v) , (28-68)

and the divergence of the vector field is

Div(V)(x, y, z) = 1 + x , such that

Div(V)(r(u, v, w)) = 1 + u · sin(v) · cos(w) .

(28-69)

The divergence integral over Ωr is therefore:∫
Ωr

Div(V) dµ =
∫ π

−π

∫ 2π/3

π/3

∫ 1

1/2
(1 + u · sin(v) · cos(w)) · u2 · sin(v) du dv dw

= · · ·

=
7π

12
,

(28-70)

which therefore – in accordance with Gauss’ theorem – also is the sought total flux out
through the surface:

Flux(V, ∂Ωr) =
7π

12
. (28-71)

Figure 28.11: A vector field around and through an edged torus.
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28.5 A Consequence for Rotational Fields

Here we mention an observation that follows directly from Gauss’ divergence theorem
in combination with the following local information about the rotational vector fields:

Theorem 28.21 The Divergence of the Curl of a Vector Field Is 0

Let V(x, y, z) denote a smooth vector field that in itself is the curl of a vector field
W(x, y, z) in (x, y, z) space. Then

Div(V)(x, y, z) = 0 . (28-72)

The curl of vector fields is thus divergence-free:

Div(Curl(W))(x, y, z) = 0 . (28-73)

Proof

We have that
V(x, y, z) = (

∂W3

∂y
− ∂W2

∂z
,

∂W1

∂z
− ∂W3

∂x
,

∂W2

∂x
− ∂W1

∂y
) , (28-74)

such that

Div(V)(x, y, z) =
(

∂2W3

∂y∂x
− ∂2W2

∂z∂x

)
+

(
∂2W1

∂z∂y
− ∂2W3

∂x∂y

)
+

(
∂2W2

∂x∂z
− ∂2W1

∂y∂z

)
= 0 , (28-75)

where we have used that the order of differentiation can be switched, e.g.:

∂2W3

∂y∂x
=

∂2W3

∂x∂y
. (28-76)

■

If we use Theorem 28.21 in combination with Gauss’ theorem we get
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Corollary 28.22 The Total Flux of the Curl of a Vector Field Is 0

Let W(x, y, z) denote a smooth vector field in (x, y, z) space and let Ω be a region
in this space with piecewise smooth surface ∂Ω with outward-directed unit normal
vector field n∂Ω.

Then the total flux of Curl(W)(x, y, z) out through the surface ∂Ω of Ω is equal to 0:

Flux(Curl(W), ∂Ω) =
∫

∂Ω
Curl(W) · n∂Ω dµ = 0 . (28-77)

If the spatial region flows with the flow curves of Curl(W(x, y, z) then the volume is
constant during the whole flow deformation:

d
dt

Vol±(t) = 0 for all t . (28-78)

Figure 28.12: A rotational vector field V(x, y, z) = Curl(W)(x, y, z) around and through a
sphere. The total flux out through the spherical surface is 0, but the local flux through suitably
chosen surface segments and the spherical surface is evidently not 0.

Example 28.23 A Rotational Vector Field through a Sphere

We let W(x, y, z) = (z2 · x, x2 · y, y2 · z).

Then
Curl(W)(x, y, z) = (2 · y · z, 2 · z · x, 2 · x · y) , (28-79)
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and evidently
Div(Curl(W))(x, y, z) = 0 . (28-80)

Now let Fr denote the spherical surface with radius 1 placed with centre at (0, 0, 0):

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) = (sin(u) · cos(v), sin(u) · sin(v), cos(u)) ,
(28-81)

where u ∈ [0, π] and v ∈ [−π, π]. As is well known the Jacobian function of this parameteri-
zation of the spherical surface is given by:

Jacobianr(u, v) = sin(u) , (28-82)

and the unit normal vector to the spherical surface is in this special case:

nF(u, v) = (x(u, v), y(u, v), z(u, v)) , (28-83)

such that

Curl(W)(x, y, z) · nF(u, v) = 2 · (y · z, y · z, y · z) · (x, y, z)

= 6 · x(u, v) · y(u, v) · z(u, v)

= 6 · sin2(u) · cos(v) · sin(v) · cos(u) .

(28-84)

The total flux integral of Rot(W)(x, y, z) out through the spherical surface is therefore:

Flux(Curl(W), Fr) =
∫

Fr

Curl(W) · nF dµ

=
∫ π

−π

∫ π

0

(
6 · sin2(u) · cos(v) · sin(v) · cos(u)

)
· Jacobianr(u, v) du dv

=
∫ π

−π

∫ π

0

(
6 · sin2(u) · cos(v) · sin(v) · cos(u)

)
· sin(u) du dv

=
∫ π

−π

∫ π

0
6 · sin3(u) · cos(v) · sin(v) · cos(u) du dv

(28-85)
and since an indefinite integral of sin3(u) · cos(u) is 1

4 · sin4(u), equal to 0 both for u = 0 and
for u = π, then

Flux(Curl(W), Fr) = 0 (28-86)

in accordance with Corollary 28.22.
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Note that if the integration intervals for u and v in Equation (28-85) in Example
28.23 had been smaller, i.e. if we had considered the flux of the rotational
vector field out through part of the spherical surface, then the result would not
necessarily be 0, which is also evident from Figure 28.12.

The flux of Curl(W(x, y, z) through a surface segment can alternatively be cal-
culated as the circulation of W(x, y, z) along the boundary of the surface seg-
ment – this is the content of Stokes’ Theorem that is the subject of eNote 27.

Figure 28.13: A divergence-free vector field V(x, y, z) = (−z, (y − x)/2, x − (z/2)) about and
through a sphere.

Example 28.24 A Divergence-Free First-Degree Vector Field

The first-degree vector field

V(x, y, z) = (−z, (y − x)/2, x − (z/2)) (28-87)

has the divergence Div(V)(x, y, z) = 0. The total flux of the vector field out through the
surface of every spatial region is therefore 0 and the volume of the spatial region is conserved
by flows with the flow curves of the vector field.

For first-degree vector fields it applies that any solid sphere deforms through solid ellipsoids
by flowing with the vector field, see Figure 28.13, Figure 28.14 and Exercise 28.25.
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Figure 28.14: The divergence-free vector field V(x, y, z) = (−z, (y − x)/2, x − (z/2)) deforms
a solid sphere to a solid ellipsoid by letting all of the points on the sphere flow with the flow
curves of the vector field. The volume is conserved. At the right is shown how a segment of the
spherical surface flows and forms part of the ellipsoidal surface.

Exercise 28.25 (Advanced)

Let V(x, y, z) denote an arbitrary first-degree vector field (see eNote 26) and let F0 denote an
arbitrary level surface of a given square polynomial f0(x, y, z) of x, y and z (see eNote 22).
We then let F0 flow for time t with the flow curves of V(x, y, z) and by this we get a surface
Ft. Show that Ft is also a level surface of a square polynomial ft(x, y, z) of x, y and z. Hint:
See eNote 17.
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28.6 Summary

We have introduced the fundamental concept flux of a vector field through a surface and
related the flux partly to the local volume expansion rate at the surface itself when it
flows with the flow curves of the vector field, and partly to the divergence of the vector
field inside a spatial region that is bounded by a given surface.

• For a smooth parameterized surface Fr and a smooth vector field V(x, y, z) the flux
of the vector field through the surface is:

Flux(V, Fr) =
∫ d

c

∫ b

a
V(r(u, v)) · (r′u(u, v)× r′v(u, v))du dv

=
∫ d

c

∫ b

a
V(r(u, v)) · NF(u, v) du dv .

(28-88)

• By letting the surface flow for a period of time t with the flow curves of V(x, y, z),
the surface sweeps through a time-dependent spatial region Ωr(t) that locally ei-
ther lies in the direction of the standard normal of the surface or in the opposite
direction. The sign-weighted volume is calculated by use of the Jacobian func-
tion of the parametric representation – without numerical sign. This volume we call
Vol±(t). Then the flux is related to this volume in the following way:

Flux(V, Fr) =
d
dt |t=0

Vol±(Ωr(t)) = Vol′±(0) . (28-89)

• The divergence of the vector field is also a measure of local volumetric expansion
(where Div(V)(x, y, z) > 0) volume contraction (where Div(V)(x, y, z) < 0) by
flow along the flow curves of the vector field. The integral of the divergence over
a spatial region Ωr is therefore a measure of the total expansion (or contraction) of
the volume of the whole region and therefore similarly yielding the value Vol′±(0),
where Vol±(t) here is calculated for the volume contribution (with sign) for all of
the surface by flows along the flow curves in relation to the outward-directed nor-
mal vector n∂Ω on the surface.

This is the content of Gauss’ divergence theorem:

d
dt

Vol±(t)|t=0
=

∫
Ωr

Div(V) dµ =
∫

∂Ωr
V · n∂Ω dµ = Flux(V, ∂Ωr) . (28-90)

• A consequence of Gauss’ divergence theorem is the following: If an arbitrary spa-
tial region flows along the flow curves of a divergence-free vector field then the
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volume of the region is constant in time – even though the form of the region of
course in time can change a lot. Every rotational vector field Curl(W)(x, y, z) is
divergence-free. A spatial region that ’rotates’ in the very general meaning that it
flows along the flow curves of Curl(W)(x, y, z) therefore conserves its volume.
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