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eNote 27

Vector Fields Along Curves

In eNote 26 the introductory considerations about vector fields are given. In this eNote we shall
look at the values of the vector fields along curves and use methods from eNote 24 about line
integration in order to state the so-called tangential line integrals and use them to investigate
whether or not a given vector field is a gradient vector field. If a vector field is a gradient vector
field of a function f (x, y, z) then we can construct all such indefinite integrals by use of
tangential line integration of the vector field. And as we shall see it applies vice versa that if the
tangential line integral of a given vector field over all closed curves is 0, then the vector field is a
gradient vector field. The tangential line integral of a vector field over a closed curve is called
the circulation of the vector field over the curve. The name alone makes it no surprise that a
general circulation 0 is equivalent to the vector field itself having the rotation vector field 0.

Updated: 01.02.2023, shsp.

27.1 The Tangential Line Integral

Let V(x, y, z) be a smooth vector field in (x, y, z) space, see eNote 26, and let Kr denote
a smooth parametrized curve:

Kr : r(u) = (x(u), y(u), z(u)) , u ∈ [a, b] . (27-1)

Along the curve Kr we then have – at every point r(u) on the curve – two vectors, on
the one hand the value of the vector field in the point, V(r(u)), and on the other the
tangent vector r′(u) to the curve at the point. By using these two vectors we can con-
struct a smooth function on the curve, which thereafter can be integrated over the curve:
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The tangential line integral of V(x, y, z) along a given parametrized curve Kr is the line
integral of the length of the projection (signed) of V(r(u)) on the tangent to the curve
that is represented by r′(u).

The integral we seek is also defined like this:

Definition 27.1

The tangential line integral of V(x, y, z) along Kr is defined by:

Tan(V, Kr) =
∫

Kr
V · e dµ . (27-2)

Accordingly, in this case the integrand is given by the scalar product:

f (r(u)) = V(r(u)) · e(u) , (27-3)

where e(u) is defined by

e(u) =

{
r′(u)/∥r′(u)∥ if r′(u) ̸= 0
0 if r′(u) = 0 .

(27-4)

Note that we then have for all u:

e(u) ∥r′(u)∥ = r′(u) . (27-5)

The tangential line integral Tan(V, Kr) of V along Kr is therefore relatively simple to
compute - in fact we need not first find the Jacobian function Jacobianr(u) , that is the
length of r′(u) :

Tan(V, Kr) =
∫

Kr
V · e dµ

=
∫ b

a
(V(r(u)) · e(u)) Jacobianr(u)du

=
∫ b

a
V(r(u)) ·

(
e(u) ∥r′(u)∥

)
du

=
∫ b

a
V(r(u)) · r′(u) du .

(27-6)
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Accordingly we have the following simple expression for tangential line integrals:

Theorem 27.2

The tangential line integral of V(x, y, z) along Kr can be computed like this:

Tan(V, Kr) =
∫

Kr
V · e dµ =

∫ b

a
V(r(u)) · r′(u) du . (27-7)

Note that the last integrand in (27-6) is continuous when V(x, y, z) and r′(u)
are continuous even though it does not at first sight appear from the definition
(the vector field e(u) is not necessarily continuous – unless r(u) is a regular
parametric representation).

If the curve is traversed backwards, then Tan(V, Kr) shifts sign.

Viz. let
Kr : r(u) = r(b + a − u) , u ∈ [a, b] . (27-8)

Then r′(u) = −r′(u) and e(u) = −e(u) such that

Tan(V, Kr) = −Tan(V, Kr) . (27-9)

Definition 27.3

Analogously with the tangential line integral we define the orthogonal line integral
Ort(V, Kr) of V along Kr by projecting V(r(u)) perpendicularly onto the plane in
(x, y, z) space that in itself is perpendicular to r′(u) and then finding the line integral
of the length of the projection (as a function of u).
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Example 27.4

Let V(x, y, z) = (0, z, y) . We wish to determine the tangential line integral of V along the
following parametrized segment of a helix

Kr : r(u) = (cos(u), sin(u), u) , u ∈
[
0,

π

2

]
. (27-10)

By substituting into (27-6) we get

Tan(V, Kr) =
∫ π/2

0
V(r(u)) · r′(u)du

=
∫ π/2

0
(0, u, sin(u)) · (− sin(u), cos(u), 1)du

=
∫ π/2

0
(u cos(u) + sin(u))du

= [u sin(u)]π/2
0 =

π

2
.

(27-11)

Exercise 27.5

Let V(x, y, z) = (0, x, z) . Determine both the tangential and the orthogonal line integral of
V along the following parametrized segment of a circle

Kr : r(u) = (cos(u), sin(u), 0) , u ∈
[
0,

π

2

]
. (27-12)
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Figure 27.1: The helix r(u) =
(
cos(u), sin(u), 1

10 u
)

, u ∈ [−2π, 2π] , and the vector field
V(x, y, z) = (x,−(x + y), 2z) are indicated here – both in (x, y, z) space and along the helix.

Method 27.6 Tangential Line Integrals to a Variable Point

Let V(x, y, z) be a given vector field in (x, y, z) space. We will now construct a
function F∗(x, y, z) in (x, y, z) space, which at the point (x0, y0, z0) is defined as the
line integral of V(x, y, z) along the straight line segment from (0, 0, 0) to the point
(x0, y0, z0), i.e. F∗ is defined like this:

F∗(x0, y0, z0) = Tan(V, Kr) , (27-13)

where the curve is given by the simplest possible curve from (0, 0, 0) to (x0, y0, z0):

Kr : r(u) = (u · x0, u · y0, u · z0) = u · (x0, y0, z0) , u ∈ [0, 1] . (27-14)

Hereby we then have the following function values of the (star) function correspond-
ing to V(x, y, z):

F∗(x0, y0, z0) = Tan(V, Kr)

=
∫ 1

0
V(r(u)) · r′(u) du

= (x0, y0, z0) ·
∫ 1

0
V(u · x0, u · y0, u · z0) du .

(27-15)

The last integral in (27-15) should be understood as an integral of each of the
three coordinate functions of V(u · x0, u · y0, u · z0). Therefore the integral gives
a vector with three components so that the scalar product with the position vec-
tor (x0, y0, z0) then yields a numerical value that accordingly is the value of the ∗-
function F∗(x, y, z) at (x0, y0, z0).
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Example 27.7 Construction of Tangential Line Integral to a Variable Point

Let V(x, y, z) denote the following vector field in (x, y, z) space:

V(x, y, z) = (x, 2y, 3z) . (27-16)

Then the corresponding ∗-function is:

F∗(x0, y0, z0) = (x0, y0, z0) ·
∫ 1

0
V(u · x0, u · y0, u · z0) du

= (x0, y0, z0) ·
∫ 1

0
(u · x0, 2u · y0, 3u · z0) du

=
1
2
· (x0, y0, z0) · (x0, 2 · y0, 3 · z0)

=
1
2
·
(
x2

0 + 2 · y2
0 + 3 · z2

0
)

=
1
2
· x2

0 + y2
0 +

3
2
· z2

0 .

(27-17)

Note that the (star) function

F∗(x, y, z) =
1
2
· x2 + y2 +

3
2
· x2

that is constructed in Example 27.7 has the following gradient that is exactly
the vector field with which we started:

∇F∗(x, y, z) = (x, 2y, 3z) = V(x, y, z) . (27-18)

This is not a coincidence! The vector field has the rotation vector field Rot = 0,
and is therefore a gradient vector field, as we shall see in Theorem 27.14 below.

27.2 The Indefinite Integral of a Gradient Vector Field
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Definition 27.8 The Indefinite Integral of a Gradient Vector Field

Let V(x, y, z) be a smooth vector field in (x, y, z) space. If a smooth function f (x, y, z)
exists such that

∇ f (x, y, z) = V(x, y, z) , (27-19)

then f (x, y, z) is said to be an indefinite integral of the vector field V(x, y, z).

If we know one indefinite integral, we then know all of them – apart from an ar-
bitrary constant! As we shall see, Method 27.6 gives a construction of all indef-
inite integrals of a given vector field. If an indefinite integral of the vector field
does not exist this method nevertheless gets us a ∗-function in (x, y, z) space
– this function is, however, not an indefinite integral. This can and should be
decided by testing, that is, by directly computing the gradient of the ∗-function
and comparison with the given vector field.

Exercise 27.9

Let V(x, y, z) denote the vector field:

V(x, y, z) = (x, 2y, 3z) . (27-20)

Determine the function values of the (star) function F∗
p (x, y, z) from the general point

p = (a, b, c) corresponding to V(x, y, z).

Hint: The straight line segment from the point (a, b, c) to (x0, y0, z0) can be parametrized like
this:

Kr : r(u) = (a + u · (x0 − a), b + u · (y0 − b), c + u · (z0 − c)) , u ∈ [0, 1] . (27-21)

such that
r′(u) = (x0 − a), y0 − b, z0 − c) . (27-22)

Is it still valid that
∇F∗

p (x, y, z) = V(x, y, z) ? (27-23)
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Theorem 27.10 Tangential Line Integral of a Gradient Vector Field

Let f (x, y, z) denote a smooth function of three variables in (x, y, z) space and let
V(x, y, z) = ∇ f (x, y, z) denote the gradient vector field of f (x, y, z). Let Kr be a
smooth parametrized curve from a point p to a point q in this space. The curve
needs not necessarily be straight.
Then the following applies: The tangential line integral of ∇ f (x, y, z) along Kr only
depends on p and q and is independent of the curve:

Tan(V, Kr) = f (q)− f (p) . (27-24)

Proof

We use the chain rule from eNote 19 on the composite function h(u) = f (r(u)) where
r(u), u ∈ ]u0, u1[, is an arbitrary differentiable curve from p = (x0, y0, z0) = r(u0) to
q = (x1, y1, z1) = r(u1) and thereby get:

h′(u) = r′(u) · ∇ f (r(u)) . (27-25)

From this it follows that h(u) is an indefinite integral of the function on the right-hand side
of the above equation:

h(u1)− h(u0) =
∫ u1

u0

r′(u) · ∇ f (r(u))du . (27-26)

But since
h(u0) = f (r(u0)) = f (p) ,

h(u1) = f (r(u1)) = f (q) ,
(27-27)

we thereby get that

f (q) = f (p) +
∫ u1

u0

r′(u) · ∇ f (r(u))du

= f (p) + Tan(V, Kr) ,
(27-28)

and this it what we should prove.

■
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Figure 27.2: The closed curve r(u) = (cos(t), sin(t), cos(2 · t)) , u ∈ [−π, π] and the gradient
vector field V(x, y, z) = (x, y, z) = ∇ f (x, y, z) of f (x, y, z) = (x2 + y2 + z2)/2 are here indi-
cated – both in 3D space and along the curve.

If the curve is closed – generally composed of a finite number of smooth curves
like e.g. a polygon with straight edges – we get that the tangential line integral
of a gradient vector field over the closed curve is 0.

Definition 27.11 The Circulation of a Vector Field Along a Closed Curve

Let K◦
r denote a closed curve in (x, y, z) space (that generally can be composed of

a finite number of smooth curves). Let V(x, y, z) be a smooth vector field in this
space. Then we call the tangential line integral of V(x, y, z) over K◦

r the circulation of
V(x, y, z) over K◦

r and write:

Circ(V, K◦
r ) = Tan(V, K◦

r ) . (27-29)

The name circulation is quite reasonable. If the vector field is a gradient vector
field we know that the rotation is 0 everywhere, see eNote 26 and this is in
accordance with the fact that the circulation in these cases is also 0 for every
closed curve.

We have already now understood one half of the following theorem – the other (some-
what more difficult) half is proved below:
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Theorem 27.12 The Circulation Theorem

A smooth vector field V(x, y, z) in (x, y, z) space is a gradient vector field if and only
if it applies that:

Circ(V, K◦
r ) = 0 (27-30)

for all closed curves K◦
r .

An indefinite integral can be constructed by the line integral method 27.6.

Proof

As mentioned above we already know that if V(x, y, z) is a gradient vector field, then the
circulation is 0 for every closed curve. To explore the opposite causality we presume that
all closed curves give the circulation 0 and from this conclude that then the vector field in
question is a gradient vector field. There is in the above exposition only one candidate that
possibly could be used as such a function, viz. the ∗-function F∗(x, y, z) corresponding to
V(x, y, z):

F∗(x, y, z) = (x, y, z) ·
∫ 1

0
V(u · x, u · y, u · z)du . (27-31)

since the circulation is 0 along every closed curve we know that this function does not
depend on the integration path: The tangential line integral of V(x, y, z) along any other
curve from (0, 0, 0) to (x, y, z) will give the same value as F∗(x, y, z).

We will show that the gradient of F∗(x, y, z) at the point (x0, y0, x0) is V(x0, y0, z0) so we look
at

F∗(x, y, z) = F∗(x0, y0, z0) + Tan(V, Kr) , (27-32)

where Kr is an arbitrary smooth curve from the (development) point (x0, y0, z0) to an arbitrary
other point (x, y, z). We again choose the straight line segment between the two points:

Kr : r(u) = (x0, y0, z0) + u · ((x, y, z)− (x0, y0, z0)) , u ∈ [0, 1] , (27-33)

and we then get:

Tan(V, Kr) = (x − x0, y − y0, z − z0) ·
∫ 1

0
V(r(u))du (27-34)

The first contribution to this scalar product is

(x − x0) ·
∫ 1

0
V1(r(u))du . (27-35)
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We will now use the observation (see Exercise 27.13) that for every smooth function g(u) on
[0, 1] it applies that a value ξ between 0 and 1 can be found such that∫ 1

0
g(u)du = g(ξ) . (27-36)

By using this integral mean value theorem we get for the substitution into (27-35):

(x − x0) ·
∫ 1

0
V1(r(u))du = (x − x0)V1(r(ξ1))

= (x − x0) · (V1(x0, y0, z0) + ε1(x − x0, y − y0, z − z0)) ,
(27-37)

since V1(x, y, z) → V1(x0, y0, z0) for (x, y, z) → (x0, y0, z0).

Correspondingly we compute the two other contributions to the scalar product in (27-34)
such that we have in total:

Tan(V, Kr) = (x − x0, y − y0, z − z0) · (V(x0, y0, z0) + ε(x − x0, y − y0, z − z0))

= (x − x0, y − y0, z − z0) · V(x0, y0, z0)

+ ρ(x0,y0,z0)(x, y, z) · ε(x − x0, y − y0, z − z0)

(27-38)

Finally we substitute this into (27-32) and get the following equation

F∗(x, y, z) = F∗(x0, y0, z0) + Tan(V, Kr)

= F∗(x0, y0, z0) + (x − x0, y − y0, z − z0) · V(x0, y0, z0)

+ ρ(x0,y0,z0)(x, y, z) · ε(x − x0, y − y0, z − z0) .

(27-39)

The gradient of the (star) function F∗(x, y, z) at (x0, y0, z0) can thereafter be read by direct
inspection – this is the ”factor” on (x − x0, y − y0, z − z0) before the epsilon term:

∇F∗(x0, y0, z0) = V(x0, y0, z0) , (27-40)

which exactly means that V(x, y, z) is a gradient vector field (with F∗(x, y, z) as an indefinite
integral), and this is what we set out to prove.

■
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Exercise 27.13

Consider – and realize – the statement we have used in the proof of theorem 27.12:
For every smooth function g(u) on [0, 1] it applies that a value ξ between 0 and 1 can be found
such that ∫ 1

0
g(u)du = g(ξ) . (27-41)

In analogy with the circulation theorem 27.12 we have similarly a two-way causation
between the gradient vector field property and the curl 0:

Theorem 27.14 The Indefinite Integral Theorem

A smooth vector field V(x, y, z) in (x, y, z) space is a gradient vector field if and only
if:

Curl(V)(x, y, z) = (0, 0, 0) . (27-42)

An indefinite integral of the vector field V(x, y, z) can be constructed by the line
integral method 27.6.

Proof

We only look at the easy part, given that the curl of a gradient vector field is 0. See also the
statement in Theorem 26.29 in eNote 26. Let also f (x, y, z) be a smooth function in (x, y, z)
space. Then

∇ f (x, y, z) =
(

f ′x(x, y, z), f ′y(x, y, z), f ′z(x, y, z)
)

. (27-43)

Since we only focus on the first coordinate in the rotation vector we get from this:

Curl(∇ f )(x, y, z) =
(

∂

∂y
f ′z(x, y, z)− ∂

∂z
f ′y(x, y, z), ∗, ∗

)
=

(
f ′′zy(x, y, z)− f ′′yz(x, y, z), ∗, ∗

)
= (0, ∗, ∗) ,

(27-44)

and similarly 0 for the other two coordinates.

■
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Example 27.15 The Tangential Line Integral of a Non-Gradient Vector Field

Let V(x, y, z) = (−y, x, 0). Then V(x, y, z) is not a gradient vector field since
Curl(V)(x, y, z) = (0, 0, 2) ̸= (0, 0, 0), see also Example 26.3 in eNote 26.

If we choose the closed curve:

Kr : r(u) = (cos(u), sin(u), 0) , u ∈ [−π, π] , (27-45)

then in accordance with the circulation theorem we get a circulation that is not 0:

Tan(V, Kr) =
∫ π

−π
(− sin(u), cos(u), 0) · (− sin(u), cos(u), 0)du

=
∫ π

−π

(
sin2(u) + cos2(u)

)
du

=
∫ π

−π
1 du

= 2 · π .

(27-46)

If we construct the ∗-function corresponding to V(x, y, z) = (−y, x, 0) we get a well-defined
function in (x, y, z) space:

F∗(x, y, z) = (x, y, z) ·
∫ 1

0
V(u · x, u · y, u · z)du

= (x, y, z) ·
∫ 1

0
(−u · y, u · x, 0)du

=
1
2
· ((x, y, z) · (−y, x, 0))

= 0 ,

(27-47)

and this is clearly not an indefinite integral of V(x, y, z), which is in full accord with the
indefinite integral theorem.
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27.3 Summary

We have defined the tangential line integral of smooth vector fields along smooth parametrized
curves and shown how the tangential line integrals can be used to construct indefinite
integrals to a vector field V(x, y, z) – if the vector field is otherwise a gradient vector
field.

• The tangential line integral of V(x, y, z) along the parametrized curve Kr can be
computed like this:

Tan(V, Kr) =
∫ b

a
V(r(u)) · r′(u) du . (27-48)

If the curve Kr is closed then the curve is denoted K◦
r , the tangential line integral

is in this case named the circulation of the vector field along the closed curve, and
we write

Circ(V, K◦
r ) = Tan(V, K◦

r ) . (27-49)

• The indefinite integral theorem gives a necessary and sufficient condition for a
given vector field being a gradient vector field:

V(x, y, z) is a gradient vector field if and only if Curl(V)(x, y, z) = (0, 0, 0).

• The circulation theorem expresses a corresponding necessary and sufficient condi-
tion for the gradient field property expressed by the circulation of the vector field
along closed curves:

V(x, y, z) is a gradient vector field if and only if Circ(V, K◦
r ) = 0 for all closed

curves K◦
r .

• The star-function F∗(x, y, z) corresponding to the gradient vector field V(x, y, z) is
an indefinite integral to V(x, y, z). The function is computed as the tangential line
integral from (0, 0, 0) to the point(x, y, z) like this:

F∗(x, y, z) = Tan(V, Kr)

=
∫ 1

0
V(r(u)) · r′(u) du

= (x, y, z) ·
∫ 1

0
V(u · x, u · y, u · z) du .

(27-50)
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