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eNote 25

Surface and Volume Integrals

Surface and volume integrals are here stated in the same way as the curve and plane integrals
in eNote 24, thereby, with the basic general introduction in the Riemann integrals in eNote 23
giving the background for the present eNote. The starting point for the determination of the
surface- and space-integrals will be the parametric representations of the surface and the spatial
region, respectively. To every parametric representation corresponds a Jacobian function and it
is this function that is used for stating and computing the integrals.

Updated: 11.1.2021, D.B.
Updated: 31.1.2023, shsp.

25.1 Surface Integrals

A parameterized surface in 3D space is given by a parametric representation that looks
a lot like the parametric representations of plane regions, cf. eNote 24. The difference
though is the quite central one, that now the z-coordinate is also a function of the two
parameter values u and v:

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 , u ∈ [a, b] , v ∈ [c, d] , (25-1)

where x(u, v), y(u, v), and z(u, v) are given smooth functions of the two variables u and
v.
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Figure 25.1: The graph surface of the function h(x, y) = x2 − y2 + y in part over the square
(x, y) ∈ [−1, 1]× [−1, 1] and in part over the circular disc with radius 1 and centre at (0, 0) in
the (x, y) plane.

Example 25.1 Graph Surfaces of Functions of Two Variables

A function h(x, y) of two variables (x, y) ∈ R2 has a graphical surface F in (x, y, z) space that
easily can be ’parameterized’ in the stated form:

F : r(u, v) = (u, v, h(u, v)) , u ∈ R , v ∈ R . (25-2)

Typically we are only interested in parts of such graphical surfaces, e.g. parts above a rectan-
gle in the (x, y) plane: x ∈ [a, b], y ∈ [c, d]. This part is parameterized as easily as all of the
graphical surface:

F̂ : r̂(u, v) = (u, v, h(u, v)) , u ∈ [a, b] , v ∈ [c, d] . (25-3)

If we on the contrary are interested in what lies above the circular disc with radius a and
centre at (0, 0) then we must first parameterize the circular disc in the (x, y) plane with the
two parameters u and v and then the graph surface segment can be presented by ’lifting’ the
points of the circular disc to the correct ’height’ with the function h(x, y):

F̃ : r̃(u, v) = (u · cos(v), u · sin(v), h (u · cos(v), u · sin(v))) , (25-4)

where the parameters u and v, now run through the parametrized region for the circular-disc
parameterization:

u ∈ [0, a] , v ∈ [−π, π] . (25-5)
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In analogy with the plane integrals (cf. eNote 24) we now define the surface integrals
like this:

Definition 25.2 The Surface Integral

Let f (x, y, z) denote a continuous function in R3. The surface integral of the function
f (x, y, z) over the parameterized surface Fr is defined by∫

Fr
f dµ =

∫ d

c

∫ b

a
f (r(u, v)) Jacobianr(u, v)du dv , (25-6)

where the Jacobian function Jacobianr(u, v)

Jacobianr(u, v) = |r′u(u, v)× r′v(u, v)| (25-7)

is the area of the parallelogram that at the location r(u, v) is spanned by the two
tangent vectors r′u(u, v) and r′v(u, v) to the respective coordinate curves through the
point r(u, v) on the surface.

Definition 25.3 Regular Parametric Representation

The parametric representation (25-1) is said to be a regular parametric representation if
the following applies:

Jacobianr(u, v) > 0 for all u ∈ [a, b] , v ∈ [c, d] . (25-8)

Definition 25.4 One-to-One Parametric Representation

As for parameterized curves the parametric representation in (25-1) is said to be one-
to-one if different points in the domain are mapped to different points in the range.
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Figure 25.2: The unit spherical surface and a segment of the unit spherical surface. The segment
is constructed by reducing the parameter domain to (u, v) ∈ [π/3, 2π/3]× [−2π/3, 2π/3].

Example 25.5 Spherical Surface Parametrization

All of the spherical surface with radius R and centre at (0, 0, 0) can be parameterized with
’geographical’ parameters like this:

SR : r(u, v) = (R · sin(u) · cos(v), R · sin(u) · sin(v), R · cos(u)) , (25-9)

where u ∈ [0, π] and v ∈ [−π, π].

The Jacobian function corresponding to this parameterization is determined by the following
computations:

r′u = R · (cos(u) · cos(v), cos(u) · sin(v),− sin(v)) ,

r′v = R · (− sin(u) · sin(v), sin(u) · cos(v), 0) ,

Jacobianr(u, v) = |r′u × r′v| = R2 · sin(u) .

(25-10)

This parameterization is neither regular everywhere nor one-to-one in the given
parametrized region. Why not? Where and how is the regularity broken? Where and how is
the one-to-one property broken? See Section 24.4 in eNote 24.

Example 25.6 Graph Surfaces

Every standard parameterization of a graph surface of a smooth function h(x, y) of two vari-
ables is one to one and regular everywhere. If we look at the standard parameterization

r(u, v) = (u, v, h(u, v)) , u ∈ [a, b] , v ∈ [c, d] (25-11)
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we get the Jacobian function by the following general computation:

r′u(u, v) = (1, 0, h′u(u, v)) ,

r′v(u, v) = (0, 1, h′v(u, v)) ,

r′u(u, v)× r′v(u, v) = (−h′u(u, v),−h′v(u, v), 1) ,

Jacobianr(u, v) =
√

1 + (h′u(u, v))2 + (h′v(u, v))2 =
√

1 + |∇h(u, v)|2 ,

(25-12)

that clearly is positive for all (u, v) in the parametrized region.

Definition 25.7 The Area of a Surface

The area of the parameterized surface

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) , u ∈ [a, b] , v ∈ [c, d]

is defined as the surface integral of the constant function 1 over the surface:

Area(Fr) =
∫

Fr
1 dµ =

∫ d

c

∫ b

a
Jacobianr(u, v)du dv . (25-13)

Example 25.8 The Area of a Graph Surface

The area of the graph surface of the function h(x, y) over the rectangular region [a, b]× [c, d]
in the (x, y) plane is therefore:

Area(F̂ ) =
∫
F̂

1 dµ =
∫ d

c

∫ b

a
Jacobianr(u, v)du dv , (25-14)

where
F̂ = Fr : r(u, v) = (u, v, h(u, v)) , u ∈ [a, b] , v ∈ [c, d] ,

Jacobianr(u, v) =
√

1 + |∇h(u, v)|2
(25-15)

such that

Area(F̂ ) =
∫ d

c

∫ b

a

√
1 + |∇h(u, v)|2 du dv . (25-16)
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Exercise 25.9

Determine the area of that part of the graph surface of the function h(x, y) = x + y − 1 that
lies above the square (x, y) ∈ [0, 1]× [0, 1] in the (x, y) plane. Note that this part of the graph
surface is a parallelogram. Use both double integration as in Example 25.8 and the classical
area determination by use of base and height.

Figure 25.3: Parts of a plane graph surface.

Exercise 25.10

Determine the area of the part of the graph surface of the function h(x, y) = x + y − 1 that
lies above the circular disc in the (x, y) plane that has the radius 1/2 and centre at (1/2, 1/2).
Note that this part of the graph surface is a plane region bounded by an ellipsis.

Exercise 25.11

Determine the area of that part of the graph surface of the function h(x, y) = x · y that lies
above the square (x, y) ∈ [−1, 1]× [−1, 1] in the (x, y) plane.



eNote 25 25.1 SURFACE INTEGRALS 7

Example 25.12 The Area of a Spherical Surface

A part of a spherical surface with radius R and centre at (0, 0, 0) is parameterized like this:

Ŝ : r̂(u, v) = (R · sin(u) · cos(v), R · sin(u) · cos(v), R · cos(u)) , (25-17)

where u ∈ [a, b] ⊂ [0, π] and v ∈ [c, d] ⊂ [−π, π].

The area of that part of the spherical surface is then, since Jacobianr̂(u, v) = R2 · sin(u):

Area(Ŝ) =
∫ d

c

∫ b

a
R2 · sin(u)du dv

= R2 · (d − c) · [− cos(u)]u=b
u=a

= R2 · (d − c) · (cos(a)− cos(b)) .

(25-18)

Therefore we also get in particular that the area of all of the spherical surface with a = 0,
b = π, c = −π, and d = π:

Area(SR) = 4π · R2 . (25-19)

25.1.1 Motivation for the Surface Integral

If we – in keeping with the motivation for the line integral – partition both the intervals
[a, b] and [c, d] in n and m equal parts, respectively, then every u-subinterval has the
length δu = (b − a)/n and every v-subinterval has the length δv = (d − c)/m. Simi-
larly the coordinates of the division points in the (u, v)-parameter region (which is the
rectangle [a, b]× [c, d] i R2 ) become - cf. the section on double integral sums in eNote
23:

(u1, v1) = (a, c),
(u1, vj) = (a, c + (j − 1)δv),

(ui, v1) = (a + (i − 1)δu, c),
(ui, vj) = (a + (i − 1)δu, c + (j − 1)δv),

....
(b, d) = (a + nδu, c + mδv) .

(25-20)
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With each of these given points (ui, vj) as development points we can consider Taylor’s
limit formula for every of the 3 coordinate functions of r(u, v) = (x(u, v), y(u, v), z(u, v))
to the first order with the corresponding epsilon functions:

r(u, v) = r(ui, vj)

+ r′u(ui, vj) · (u − ui)

+ r′v(ui, vj) · (v − vj)

+ ρij · εij(u − ui, v − vi) ,

(25-21)

where u ∈ [ ui , ui + δu ] , v ∈
[

vj , vj + δv
]

. Here ρij =
√
(u − ui)2 + (v − vj)2 de-

notes the distance between the variable point (u , v) and the given development point
(ui , vj) in the parametrized region. It applies here that εij(u − ui, v − vj) → (0, 0, 0) =
0 for (u − ui, v − vj) → (0, 0) .

Every subrectangle [ui, ui + δu]× [vj, vj + δv] is mapped onto the surface segment r(u, v),
u ∈ [ui, ui + δu], v ∈ [vj, vj + δv] and this surface segment we can approximate with the
linear part of the expression in (25-21) that we get by removing the εij-term form the
right-hand side in (25-21):

rapp ij
(u, v) = r(ui, vj) + r′u(ui, vj) · (u − ui) + r′v(ui, vj) · (v − vj) , (25-22)

where u and v still run through the subintervals u ∈ [ ui , ui + δu ] , v ∈
[

vj , vj + δv
]

.

These linear approximations are parallelograms spanned by the two tangent vectors
r′u(ui, vj) · δu and r′v(ui, vj) · δv. See Figure 25.4 where the approximating parallelograms
are shown for a parameterization of a conic surface.

Area

Each of the total of n m approximating parallelograms has an area. The area of the
(i, j)th parallelogram is the length of the cross product of the two vectors that span the
parallelogram in question:

∆ Areaij = |(r′u(ui, vj) · δu)× (r′v(ui, vj) · δv)| = Jacobianr(ui, vj) · δuδv . (25-23)
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Exercise 25.13

Prove this statement: The area of a parallelogram is equal to the length of the cross product
of the two vectors that span the parallelogram.

The sum of this total of n · m areas is clearly a good approximation to the area of the
whole surface segment, such that we have

Areaapp(n, m) =
m

∑
j=1

n

∑
i=1

∆ Areaij =
m

∑
j=1

n

∑
i=1

Jacobianr(ui, vj) · δuδv . (25-24)

Since the sum above is an integral sum for the continuous function Jacobianr(u, v) over
the parametrized rectangle [a, b]× [c, d] we get in the limit, where n and m both tend
towards infinity (cf. eNote 23):

Areaapp(n, m) → Area =
∫ d

c

∫ b

a
Jacobianr(u, v)du dv =

∫
Fr

1 dµ for n , m → ∞ .

(25-25)

This is the basic argument for the definition of the area of a parameterized surface as
stated above, viz. as the surface integral of the constant function 1.

Figure 25.4: The conic surface is given by the parametric representation r(u, v) =

(u cos(v), u sin(v), u) , u ∈ [−1, 1] , v ∈ [−π, π]. A system of coordinate curves on the sur-
face is shown to the left and the corresponding area-approximating parallelograms are shown
to the right.
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Exercise 25.14

Show that the given parametric representation in Figure 25.4 is neither a regular nor a one-
to-one mapping in the given parametrized region. Consider whether a regular parametric
representation of the conic surface can be found.

Exercise 25.15

Why are the approximating parallelograms on the upper half of the conic surface in Figure
25.4 smaller than the corresponding parallelograms (with equal distance to the vertex) on the
lower part?

Figure 25.5: This helicoid is given by the parametric representation r(u, v) =

(sinh(u) cos(v), sinh(u) sin(v), v) . The figure also shows an approximation of the surface with
parallelograms that are all in fact squares of different sizes. See Exercise 25.16.

Exercise 25.16

Show that the approximating parallelograms in Figure 25.5 are all squares.

The Mass of a Surface

If we now assume that each individual parallelogram in (25-22) is allotted a constant
mass density given by the value of the function f (x, y, z) at the point of contact between
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the parallelogram and the surface, then we get the mass of the (i, j)th parallelogram :

∆ Mij = f (x(ui, vj), y(ui, vj), z(ui, vj)) Jacobianr(ui, vj) · δuδv

= f (r(ui, vj)) Jacobianr(ui, vj) · δuδv .
(25-26)

Therefore the total mass of the whole system of parallelograms is the following, which
is a good approximation to the mass of the whole surface when this is given the mass
density f (r(u, v)) in the point r(u, v).

Mapp(n, m) =
m

∑
j=1

n

∑
i=1

∆ Mij =
m

∑
j=1

n

∑
i=1

f (r(ui, vj)) Jacobianr(ui, vj) · δuδv . (25-27)

This is a double integral sum for the continuous function f (r(u, v)) Jacobianr(u, v) over
the parametrized rectangle [a, b] × [c, d] . So we get in the limit, where n and m tend
towards infinity:

Mapp(n, m) → M =
∫ d

c

∫ b

a
f (r(u, v))Jacobianr(u, v)du dv for n , m → ∞ .

(25-28)

Thus we have motivated the definition of the mass of a parameterized surface with the
mass density f (r(u, v)) and hereby also the general definition of the surface integral,
definition 25.2.

25.1.2 Surfaces of Revolution

Surfaces of revolution are the special surfaces that appear by rotating a plane curve
about a straight line (the axis of rotation) in the plane of the curve. The curve is called a
profile curve or a generatrix. It is assumed that the profile curve does not intersect the axis
of rotation. The profile curve is typically chosen in the (x, z) plane and is rotated about
the z-axis in an (x, y, z) coordinate system. The profile curve can then be represented
by a parametric representation like this:

Gp : p(u) = (g(u), 0, h(u)) ∈ R3 , u ∈ [a, b] , (25-29)

where g(u) > 0 and h(u) are given functions of the parameter u. The surface of rev-
olution that appears by rotating Gp a whole turn around the z-axis therefore has the
parametric representation:

FGr : r(u, v) = (g(u) cos(v), g(u) sin(v), h(u)) , u ∈ [a, b] , v ∈ [−π, π] . (25-30)
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Figure 25.6: The surface of revolution here is given by the parametric representation r(u, v) =

(g(u) cos(v), g(u) sin(v), h(u)) , u ∈ [−π, π] , v ∈ [−π, π], where g(u) = 1
2 + 1

4 sin(u) and
h(u) = u.

Exercise 25.17

Show that the Jacobian function Jacobianr(u, v) for the parametric representation r(u, v) for
the general surface of revolution FGr in (25-30) is given by

Jacobianr(u, v) = g(u)
√
(h′(u))2 + (g′(u))2 . (25-31)

Example 25.18 Torus Area

A given torus is parameterized in the following way:

T : r(u, v) = (g(u) cos(v), g(u) sin(v), h(u)) , u ∈ [−π, π] , v ∈ [−π, π] , (25-32)

where g(u) = 2 + cos(u) and h(u) = sin(u).

The Jacobian function is

Jacobianr(u, v) = g(u)
√
(h′(u))2 + (g′(u))2 = 2 + cos(u) , (25-33)

so the area of this torus is simply:

Area(T ) =
∫ π

−π

∫ π

−π
(2 + cos(u))du dv = 8π2 . (25-34)
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Figure 25.7: This so-called torus is a surface of revolution given by the parametric repre-
sentation r(u, v) = (g(u) cos(v), g(u) sin(v), h(u)) , u ∈ [−π, π] , v ∈ [−π, π], where now
g(u) = 2 + cos(u) and h(u) = sin(u).

If we ’load’ this torus with a weight function, mass density, given by the function f (x, y, z) =
2 + z we get the total weight of the torus:

M(T ) =
∫ π

−π

∫ π

−π
(2 + sin(u)) · (2 + cos(u))du dv = 16π2 . (25-35)

25.2 Triple Integrals

A parameterized spatial region is similar to curves and surfaces given by a parametric
representation, now with the following form where the three coordinate functions x, y,
and z now are functions of the three parameter variables u, v, and w:

Ωr : r(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)) ∈ R3 ,
u ∈ [a, b] , v ∈ [c, d], w ∈ [h, l] .

(25-36)
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Figure 25.8: This torus is the same as in Figure 25.7, but is here given by the weight function
f (x, y, z) = 2 + z. The total mass of the weighted torus is M = 16π2.

Definition 25.19 Triple Integral, Volume Integral

Let f (x, y, z) denote a continuous function in R3. The triple integral or volume in-
tegral of the function f (x, y, z) over the parameterized spatial region Ωr is defined
by ∫

Ωr
f dµ =

∫ l

h

∫ d

c

∫ b

a
f (r(u, v, w)) Jacobianr(u, v, w)du dv dw , (25-37)

where the Jacobian function Jacobianr(u, v, w) is now given by

Jacobianr(u, v, w) = | (r′u(u, v, w)× r′v(u, v, w)) · r′w(u, v, w) | . (25-38)

That is, Jacobianr(u, v, w) is the volume (here computed as a spatial product) of the
parallelepiped that at the position r(u, v, w) is spanned by the three coordinate curve
tangent vectors r′u(u, v, w) , r′v(u, v, w) and r′w(u, v, w).
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Exercise 25.20

Show that the Jacobian function Jacobianr(u, v, w) can also be found as the numerical value
of the determinant of the matrix that as columns has the coordinates of the three vectors
r′u(u, v, w), r′v(u, v, w) and r′w(u, v, w).

Definition 25.21 Regular Parametric Representation

The parametric representation in (25-36) is called a regular parametric representation if
Jacobianr(u, v, w) > 0 for all u ∈ [a, b] , v ∈ [c, d], w ∈ [h, l] .

Definition 25.22 One-to-One Parametric Representation

As for curves and surfaces we will call the parametric representation in (25-36) one-
to-one if different points in the domain are mapped to different points in the range.

Definition 25.23 Volume

The volume of the spatial region

Ωr : r(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)) , (25-39)

where
u ∈ [a, b] , v ∈ [c, d] , and w ∈ [h, l] , (25-40)

is defined as the triple integral of the constant function 1:

Vol(Ωr) =
∫

Ωr
1 dµ =

∫ l

h

∫ d

c

∫ b

a
Jacobianr(u, v, w)du dv dw . (25-41)

Exercise 25.24

Show that the parametric representation in Figure 25.9 is regular and one-to-one.
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Figure 25.9: Image of the spatial region given by the parametric representation r(u, v, w) =

(u v cos(w), u v sin(w), 1
2 (u

2 − v2)) , u ∈ [ 1
2 , 1] , v ∈ [ 1

2 , 1] , w ∈ [π, 2π].

25.2.1 Motivation for the Triple Integral

The intervals [a, b], [c, d] and [h, l] are partitioned into n, m and q equal parts, respec-
tively. Then every u-subinterval has the length δu = (b − a)/n, every v-subinterval has
the length δv = (d − c)/m and every w-interval has the length δw = (l − h)/q. Cor-
respondingly the coordinates of every division point in the (u, v, w)-parameter region
(which here is the right-angled ’box-region’ [a, b]× [c, d]× [h, k] in R3.

(u1, v1, w1) = (a, c, h),
....

(ui, vj, wk) = (a + (i − 1)δu, c + (j − 1)δv, h + (k − 1)δw),

....
(b, d, l) = (a + nδu, c + mδv, h + qδw) .

(25-42)

With any of these given points (ui, vj, wk) as development points we can again use Tay-
lor’s limit formula for each of the 3 coordinate functions of

r(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))

to the first order and with corresponding epsilon functions:

r(u, v, w) = r(ui, vj, wk)

+ r′u(ui, vj, wk) · (u − ui)

+ r′v(ui, vj, wk) · (v − vj)

+ r′w(ui, vj, wk) · (w − wk)

+ ρijk · εijk(u − ui, v − vj, w − wk) ,

(25-43)
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where u ∈ [ ui , ui + δu ] , v ∈
[

vj , vj + δv
]

, w ∈
[

wj , wj + δw
]

. The distance be-
tween the variable point (u , v , w) and the given point (ui , vj , wk) in the parametrized
region is denoted by ρijk and as before we have εijk(u − ui, v − vj, w − wk) → 0 for
(u − ui, v − vj, w − wk) → (0, 0, 0) .

Every parameter subregion or sub-box [ui, ui + δu]× [vj, vj + δv]× [wk, wk + δw] is mapped
onto the spatial image region r(u, v, w), u ∈ [ui, ui + δu], v ∈ [vj, vj + δv], w ∈ [wk, wk +
δw] in the mapping range and this region we can approximate with the linear part of the
expression in (25-43) that we get by removing the εijk-term from the right-hand side in
(25-43):

rapp ijk
(u, v, w) = r(ui, vj, wk)

+ r′u(ui, vj, wk) · (u − ui)

+ r′v(ui, vj, wk) · (v − vj)

+ r′w(ui, vj, wk) · (w − wk) ,

(25-44)

where we still have that u ∈ [ ui , ui + δu ] , v ∈
[

vj , vj + δv
]

, w ∈
[

wj , wj + δw
]

.

These linear spatial approximations are parallelepipeds spanned by the three tangent
vectors r′u(ui, vj, wk) · δu , r′v(ui, vj, wk) · δv and r′w(ui, vj, wk) · δw .

Volume

Each one of the n m q approximating parallelepipeds has a volume. The volume of the
(i, j, k)th parallelepiped is the numerical value of the spatial product of the three vectors
spanning the parallelepiped in question:

∆ Volijk = |
(
(r′u(ui, vj, wk) · δu)× (r′v(ui, vj, wk) · δv)

)
· (r′w(ui, vj, wk) · δw)|

= Jacobianr(ui, vj, wk) · δu · δv · δw .
(25-45)

Exercise 25.25

Prove this statement: The volume of a parallelepiped is the numerical value of the spatial
product of its three spanning vectors.

The sum of the total of n m q volumes is a good approximation to the volume of the
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whole spatial region, so that we have

Volapp(n, m, q) =
q

∑
k=1

m

∑
j=1

n

∑
i=1

∆ Volijk

=
q

∑
k=1

m

∑
j=1

n

∑
i=1

Jacobianr(ui, vj, wk) · δuδvδw .

(25-46)

Since the above sum is a triple integral sum for the continuous function of the three
variables, Jacobianr(u, v, w) , over the parameter box [a, b]× [c, d]× [h, l] we get in the
limit, where n, m and q all tend towards infinity:

Volapp(n, m, q) → Vol =
∫ l

h

∫ d

c

∫ b

a
Jacobianr(u, v, w)du dv dw for n , m , q → ∞ .

(25-47)

This is the justification for the definition of the volume of a parameterized region in
(x, y, z) space as given above, viz. as the triple integral of the constant function 1.

Figure 25.10: Two different partial spherical tessellations with parallelepipeds. See Exercise
25.26.
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Exercise 25.26

The spherical parametric representations in Figure 25.10 are as follows, respectively:

r1(u, v, w) = [w sin(u) cos(v), w sin(u) sin(v), w cos(u) ]

r2(u, v, w) = [w sin(v) cos(u + v), w sin(v) sin(u + v), w cos(v) ] ,

where the parameter intervals in both cases are given by:

u ∈ [−π, 0] , v ∈ [0, π] , w ∈ [0, 1] .

Determine the Jacobian functions of both of the two parametric representations and show
that both of the shown spatial regions have the volume 2π/3, that is, exactly half of all of the
volume of the unit sphere.

Mass

If we now assume that every individual parallelepiped given by (25-44) is allotted a
constant mass density that is given by the value of the function f (x, y, z) at the position
r(ui, vj, wk), then the mass of the (i, j, k)th parallelepiped becomes:

∆ Mijk = f (x(ui, vj, wk), y(ui, vj, wk), z(ui, vj, wk)) Jacobianr(ui, vj, wk) · δuδvδw

= f (r(ui, vj, wk)) Jacobianr(ui, vj, wk) · δuδvδw .
(25-48)

The total mass of the whole system of approximating parallelepipeds is therefore the
following, which necessarily is a good approximation to the mass of the whole spatial
region:

Mapp(n, m, q) =
q

∑
k=1

m

∑
j=1

n

∑
i=1

∆ Mijk

=
q

∑
k=1

m

∑
j=1

n

∑
i=1

f (r(ui, vj, wk)) Jacobianr(ui, vj, wk) · δuδvδw .

(25-49)

This is a triple integral sum for the continuous function f (r(u, v, w)) Jacobianr(u, v, w)
over the parameter box [a, b]× [c, d]× [h, l] . We get in the limit, where n, m and q tend
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towards infinity:

Mapp(n, m, q) → M =
∫ l

h

∫ d

c

∫ b

a
f (r(u, v, w))Jacobianr(u, v, w)du dv dw

for n, m, q → ∞ .
(25-50)

Hereby we have motivated the definition of the mass of a parameterized region with the
mass density f (r(u, v, w)) and hereby also the general definition 25.19 of triple integral.

Exercise 25.27

In Figure 25.11 the following parameterization of a spatial region:

r(u, v, w) = (u sin(v) cos(w), u sin(v) sin(w), u cos(v)) , (25-51)

where u ∈ [1/2, 1], v ∈ [π/3, 2π/3], and w ∈ [−π, π]. By mapping the box-shaped
parametrized region we expect a total of six side surfaces for the image set, i.e. for the spatial
region that appears by the parametric representation. The Figure only shows three of the 6
side surfaces. Where are the others and how do they look?

Figure 25.11: This spatial region is given by the parametric representation r(u, v, w) =

(u sin(v) cos(w), u sin(v) sin(w), u cos(v)) , u ∈ [1/2, 1] , v ∈ [π/3, 2π/3] , w ∈ [−π, π]. The
parameter box, the coordinate curves, the image of the spatial region by the parametric repre-
sentation and a system of volume-approximating parallellepipids are shown.
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Figure 25.12: This spatial region is a ’solid-angle’-segment of the spherical surface represented
by r(u, v, w) = (u sin(v) cos(w), u sin(v) sin(w), u cos(v)) , u ∈ [0, 1] , v ∈ [0, π/6] , w ∈
[−π, π].

Example 25.28 The Volume of a Solid Ellipsoid

A solid ellipsoid with semi-axes a, b, and c has a parametric representation:

r(u, v, w) = (a u sin(v) cos(w), b u sin(v) sin(w), c u cos(v)) , (25-52)

where u ∈ [0, 1], v ∈ [0, π] and w ∈ [−π, π].

The Jacobian function of this parameterization is Jacobian(u, v, w) = abc u2 sin(v) , and from
this the volume follows by triple integration:

Vol(Ωr) =
∫

Ωr

1 dµ

=
∫ π

−π

∫ π

0

∫ 1

0
Jacobianr(u, v, w)du dv dw

= abc
∫ π

−π

∫ π

0

∫ 1

0
u2 sin(v)du dv dw

=
4
3

π abc .

(25-53)

For a solid sphere Ba with radius a we therefore get the volume

Vol(Ba) =
4
3

π · a3 . (25-54)
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Example 25.29 Graph Surface Bounded Spatial Region

A positive function h(x, y) of two variables (x, y) has a graph surface that over a given
region P in the (x, y) plane bounds a spatial region. It is easy to parameterize the spatial
region when first the plane region is parameterized.

If the plane region is given by a rectangle (x, y) ∈ [a, b]× [c, d] we have the parametric repre-
sentation of the spatial region:

Ωr : r(u, v, w) = (u, v, w · h(u, v)) , (u, v) ∈ [a, b]× [c, d] , w ∈ [0, 1] . (25-55)

The Jacobian function is particularly simple:

Jacobianr(u, v, w) = |((1, 0, w · h′u(u, v))× (0, 1, w · h′v(u, v))) · (0, 0, h(u, v))|
= |((1, 0, ∗)× (0, 1, ∗∗)) · (0, 0, h(u, v))|
= h(u, v) .

(25-56)

The volume of the spatial region that is bounded by the graph surface together with the plane
region in the (x, y) plane is therefore:

Vol(Ωr) =
∫ 1

0

∫ d

c

∫ b

a
h(u, v)du dv dw =

∫ d

c

∫ b

a
h(u, v)du dv . (25-57)

If the plane region P in the (x, y) plane is not a rectangle as above, we must first parameterize
P. Therefore we now assume that the plane region P is an image of a rectangular parametric
region by a vector function r̂:

P : r̂(u, v) = (ξ(u, v), η(u, v)) , u ∈ [a, b] , v ∈ [c, d] , (25-58)

where ξ(u, v) and η(u, v) are given functions of u and v. Then the spatial region between P
and the graph surface h(x, y) is given by the parametric representation:

Ωr : r(u, v, w) = (ξ(u, v), η(u, v), w · h(ξ(u, v), η(u, v))) , (25-59)

where (u, v) ∈ [a, b]× [c, d] and w ∈ [0, 1] with the corresponding Jacobian function:

Jacobianr(u, v, w) =

= |((ξ ′u(u, v), η′
u(u, v), ∗)× (ξ ′v(u, v), η′

v(u, v), ∗∗)) · (0, 0, h(ξ(u, v), η(u, v)))|
= h(ξ(u, v), η(u, v)) · Jacobianr̂(u, v) .

(25-60)

The volume of the spatial region that is bounded by the graph surface together with the plane
region in the (x, y) plane is therefore in this more general situation:

Vol(Ωr) =
∫ 1

0

∫ d

c

∫ b

a
h(ξ(u, v), η(u, v)) · Jacobianr̂(u, v)du dv dw

=
∫ d

c

∫ b

a
h(ξ(u, v), η(u, v)) · Jacobianr̂(u, v)du dv .

(25-61)
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Figure 25.13: The Planetarium is bounded by the graph surface of f (x, y) = 2 − x − y above a
circular floor plan in the (x, y) plane with radius 1 and centre at (0, 0). The volume is 2π.

Figure 25.14: A Planetarium-like solid with a little more complicated top surface; the function
used is here f (x, y) = y2 − x2 + 2x + 3. The volume is ca. 2.36.

Example 25.30 The Tycho Brahe Planetarium

The volume of a cylinder between two plane sections (see Figure 25.13) is determined by the
parametric representation:

Ωr : r(u, v, w) = (ξ(u, v), η(u, v), w · h(ξ(u, v), η(u, v))) , (25-62)

where the height function is h(x, y) = 2 − x − y, the parameters are (u, v) ∈ [0, 1]× [−π, π],
w ∈ [0, 1], and the circular ground area is given by

P : r̂(u, v) = (u · cos(v), u · sin(v)) , u ∈ [0, 1] , v ∈ [−π, π] (25-63)

with the Jacobian function
Jacobianr̂(u, v) = u , (25-64)
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such that

Vol(Ωr) =
∫ π

−π

∫ 1

0
h(ξ(u, v), η(u, v)) · Jacobianr̂(u, v)du dv

=
∫ π

−π

∫ 1

0
(2 − u · cos(v)− u · sin(v)) · u du dv

=
∫ π

−π

∫ 1

0
(2u − u2 · cos(v)− u2 · sin(v))du dv

=
∫ π

−π
(
[
u2]u=1

u=0 −
[

1
3

u3
]u=1

u=0
· cos(v)−

[
1
3

u3
]u=1

u=0
· sin(v))dv

=
∫ π

−π

(
1 − 1

3
· cos(v)− 1

3
· sin(v)

)
dv

= 2 · π .

(25-65)

Note that the volume, due to symmetry, also can be found more easily as half that of a cylin-
der with identical base but ending in a horizontal section at height 4.

25.3 Solids of Revolution

Solids of revolution are the special spatial regions created by rotating a plane region
(e.g. defined in the (x, z) plane) about an axis of rotation in the same plane (the z-axis)
that is assumed to lie outside the region. Cf. the definition of surfaces of revolution in
section 25.1.2.

The plane region - the profile region - is represented by a parametric representation like
this:

Pr : r(u, v) = (g(u, v), 0, h(u, v)) ∈ R3 , u ∈ [a, b] , v ∈ [c, d] , (25-66)

where g(u, v) > 0 and h(u, v) are given functions of the parameters u and v. The
spatial region, the solid that appears by rotating the profile region a whole turn around
the z-axis, therefore has the parametric representation:

ΩPr : r(u, v, w) = (g(u, v) cos(w), g(u, v) sin(w), h(u, v)) ∈ R3 ,
u ∈ [a, b] , v ∈ [c, d] , w ∈ [−π, π] .

(25-67)

Figure 25.9 shows half of a solid of rotation. Figure 25.11 shows the surface of a solid
of rotation defined by the use of spherical coordinates. Cylindrical coordinates in 3D
space give similarly well-known solids of revolution such as e.g. the one that is shown
in Figure 25.15.



eNote 25 25.3 SOLIDS OF REVOLUTION 25

Figure 25.15: A spatial region parameterized through cylindrical coordinates is given by the
parametric representation r(u, v, w) = (g(u, v) cos(w), g(u, v) sin(w), h(u, v)) , u ∈ [0, 1

2 ] , v ∈
[− 1

2 , 1
2 ] , w ∈ [−π, π], where g(u, v) = u and h(u, v) = v.

Exercise 25.31

Show that the Jacobian function Jacobianr(u, v, w) for the parametric representation r(u, v, w)

for the generalized solid of revolution ΩPr in (25-67) is given by

Jacobianr(u, v, w) = g(u, v) |g′u(u, v) h′v(u, v)− h′u(u, v) g′v(u, v)| . (25-68)

Figure 25.16: Parts of a bottle of revolution and a dish of revolution, respectively, see Exercise
25.32.
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Exercise 25.32

A bottle (or dish?) of revolution is given (apart from the base) by the parametric representa-
tion of its profile curve in the (x, z)−plane like this:

Gr : r(u) = (g(u), 0, h(u)) ∈ R3 , u ∈ [0, 1] , (25-69)

where
g(u) = 2(R1 − R2)u3 + 3(R2 − R1)u2 + R1

h(u) = H u ,
(25-70)

for suitable choices of positive constants R1, R2 and H.

1. Plot different versions of these surfaces of revolution, see e.g. Figure 25.16.

2. Show that the surface of revolution is perpendicular to the (x, y) plane for every choice
of the positive constants R1, R2, and H.

3. How large a volume ( of e.g. water) can the surface of revolution ’contain’ for given
values of the positive constants R1, R2, and H?

4. What is the area of the surface of the surface of revolution + base for given values of
the positive constants R1, R2, and H?

5. Which choice(s) of constants give(s) the largest volume in proportion to the total sur-
face area?

25.4 More Architecturally Motivated Spatial Regions

Exercise 25.33

Inspired by Malmö’s Turning Torso it is an interesting exercise to find the volume and the
surface area of different ’twisted’ buildings:

1. Find a parametric representation of the spatial area shown in Figure 25.17 to the left.
Choose the dimensions of your building (base, height) of your building yourself. Hint:
The ascending curves (which in a similar, but non-twisted building would have been
straight vertical lines )are helices, see Example 24.3 in eNote 24 .

2. What is the volume of your building?
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3. What is the area of the surfaces of the side walls of the building?

4. With given height and base: Show that the volume is independent of the number of
turns (the number of times the section figure is rotated from the bottom to the top –
for the Torso the turn number is 1/5). How does the surface area depend on the turn
number? With which turn number do we get the largest volume in proportion to the
total surface area (of the side walls)?

Figure 25.17: Five-edged Turning Torso model and ’the real thing’ in Malmö.

Exercise 25.34

Find the parametric representation of the two (highest) towers that are shown in Figure 25.18.
Choose the dimensions yourself. Hint: The tower in the left image has an elliptic section.
Find volume and surface area of each of the buildings.
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Figure 25.18: Chinese–Canadian project.
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25.5 Summary

We have in this eNote described those concepts and methods that make it possible to
compute (weighted) areas and volumes of surfaces and spatial regions, respectively,
– inasmuch they are given by parametric representations from rectangular and box-
shaped parametric regions. A series of examples and exercises show how very different
surfaces and regions can be parameterized by fairly simple vector functions r(u, v) and
r(u, v, w).

When first a relevant parameterization is stated the ’remaining task’ is only a question
about computing the corresponding Jacobian function Jacobianr(u, v) or Jacobianr(u, v, w),
multiply this by a possible weight function f (x, y, z) limited to the image set in the space
of the parameterization, and finally compute the double or triple integral of this product
over the parametrized rectangle or parameter box:

• For a surface Fr with the parametric representation

Fr : r(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3 , u ∈ [a, b] , v ∈ [c, d] (25-71)

the integral of the (weight-)function f (x, y, z) over the surface is given by:∫
Fr

f dµ =
∫ d

c

∫ b

a
f (r(u, v)) Jacobianr(u, v)du dv , (25-72)

where the Jacobian function Jacobianr(u, v)

Jacobianr(u, v) = |r′u(u, v)× r′v(u, v)| (25-73)

is the area of the parallelogram that at this position r(u, v) is spanned by the two
tangent vectors r′u(u, v) and r′v(u, v) to the respective coordinate curves through
the point r(u, v) on the surface.

• In particular the area of Fr is determined by:

Area(Fr) =
∫

Fr
1 dµ =

∫ d

c

∫ b

a
Jacobianr(u, v)du dv . (25-74)

• For a spatial region Ωr with the parametric representation

Ωr : r(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)) , (25-75)
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where u ∈ [a, b], v ∈ [c, d], and w ∈ [h, l] the integral of the (weight-)function
f (x, y, z) over the region given by:∫

Ωr
f dµ =

∫ l

h

∫ d

c

∫ b

a
f (r(u, v, w)) Jacobianr(u, v, w)du dv dw , (25-76)

where the Jacobian function Jacobianr(u, v, w)

Jacobianr(u, v, w) = |
(
r′u(u, v, w)× r′v(u, v, w)

)
· r′w(u, v, w)| (25-77)

is the volume of the parallelepiped that at this position r(u, v, w) is spanned by
the three tangent vectors r′u(u, v, w), r′v(u, v, w), and r′w(u, v, w) to the respective
coordinate curves through the point r(u, v, w) in the spatial region.

• In particular the volume of Ωr is determined by:

Vol(Ωr) =
∫

Ωr
1 dµ =

∫ l

h

∫ d

c

∫ b

a
Jacobianr(u, v, w)du dv dw . (25-78)
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