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eNote 24

Line and Plane Integrals

With the methods and results stated in eNote 23 as our starting point we will in this eNote
show how Riemann integrals can be used to find lengths of curves and areas of plane regions,
inasmuch they are described in suitable parametric form.

Updated: 11.1.2022, D.B.
Updated 2.2.2023, shsp.

24.1 Line Integrals

Initially we will consider curves that are parameterized in the following way with a
parametric description.

A parameterized curve Kr in (x, y, z) space is given by a parametric description like this:

Kr : r(u) = (x(u), y(u), z(u)) ∈ R3 , u ∈ [a, b] . (24-1)

Usually a given curve can be parameterized in infinitely many ways. Figure
24.1 shows three different parameterizations of the straight line segment from
(0,−2, 1

2) to (0, 2, 1
2) . Figure 24.2 similarly shows two different parameteriza-

tions of a circle with radius 1 and centre at (0, 0, 0). Figure 24.4 similarly shows
2 different parameterizations of a helic.
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Figure 24.1: The line segment from (0,−2, 1
2 ) to (0, 2, 1

2 ) is here parameterized in 3 dif-
ferent ways: r1(u) =

(
0, 2u, 1

2

)
, u ∈ [−1, 1] ; r2(u) =

(
0, 2 u3, 1

2

)
, u ∈ [−1, 1] , and

r3(u) =
(
0, 2 sin(π

2 u), 1
2

)
, u ∈ [−1, 1] . The marks on the individual line segments stem from

the partition of the common parameter interval [−1, 1] consisting of 20 subintervals of equal size.
Note that the lengths of the three ’curves’ clearly are equal, even though the parameterizations
are quite different. See Exercise 24.16.

We assume here and in what follows that the three coordinate functions x(u), y(u) and
z(u) in the parametric representations are well-behaved functions of u, i.e. that we
assume that all three are smooth functions of u such that they can be differentiated
arbitrarily many times. In particular the derivatives x′(u), y′(u) and z′(u) are therefore
continuous in the interval [a, b]. Then we also have that

|r′(u)| =
√

x′(u)2 + y′(u)2 + z′(u)2 (24-2)

is a continuous function in the interval [a, b]. Therefore this function can be integrated
over the interval, cf. eNote 23 and we need this in the definition 24.5 below.

Definition 24.1 Regular Parametric Representation

A parametric representation r(u) of a curve Kr - which in (24-1) - is said to be a
regular parametric representation if the following condition is fulfilled:

r′(u) ̸= 0 for all u ∈ [a, b] . (24-3)

Exercise 24.2

Which of the parametric representations in the Figures 24.1, 24.2, 24.4, and 24.5 are regular?
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A parameterized curve is more than just the image (the set of points) r([a, b]),
since the parameterization itself can e.g. state that the parts of the set of points
shall be met more than once, see Example 24.10 below.

One can think of the interval [a, b] as a straight elastic at rest. The vector
map r deforms the rubber band (into the space) by bending, stretching or
compressing it. A local stretch will of course make the band longer locally,
while a local compression makes the band shorter locally. Therefore a first
natural question is how long is the whole rubber band after we have used the
map r. The line integral is introduced i.a. for the purpose of finding the total
length of the deformed curve in 3D space.

Similarly we can imagine that the parameterized curve itself is massless, but
that on the other hand it after the deformation by r is colored with paint in
such a way that density of paint along the curve (e.g. in grams per centimeter)
is given as a function f of the position (x, y, z) in 3D space – so that the density
of the paint at the position r(u) is f (r(u)). The task is then to find the total
mass of the deformed and colored parameterized curve. Note that with a little
imagination we can allow that the density f to assume negative values.

These imaginations shall only be a help to get a suitable intuitive understand-
ing of the concepts introduced; we shall see, in related eNotes, several other
interpretations and uses of the line integral.

Example 24.3 Helix

The helix in Figure 24.4 is presented by two different parameterizations:

r1(u) =
(
cos(2πu), sin(2πu), π

5 u
)

, u ∈ [−1, 1] , og

r2(u) =
(
cos(2π u3), sin(2π u3), π

5 u3) , u ∈ [−1, 1] .

The marks stem from the partitioning parameter interval [−1, 1] that consists of 200 subinter-
vals of equal size. Again the curves are clearly of equal length (see Exercise 24.16).
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Figure 24.2: A circle in the (x, y) plane is here parameterized in two different ways: r1(u) =

(cos(π u), sin(π u), 0) , u ∈ [−1, 1] , and r2(u) =
(
cos(π u3), sin(π u3), 0

)
, u ∈ [−1, 1] . The

marks stem from the partitioning of the parameter interval [−1, 1] that consists of 100 subintervals
of equal size. The circumference of the circle is 2π – independent of the parameterization.

Example 24.4 Knot

The knot in Figure 24.5 has the somewhat complicated parametric representation
r(u) =

(
− 1

3 cos(u)− 1
15 cos(5u) + 1

2 sin(2u) , 1
3 sin(u)− 1

15 sin(5u)− 1
2 cos(2u) , 1

3 cos(3u)
)

,
with u ∈ [−π, π].

We define line integration in the following way and motivate the definition in section
24.1.1 below:
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Figure 24.3: Carl Gustav Jakob Jacobi. See Biography.

Definition 24.5 Line Integral

Let f (x, y, z) denote a continuous function on R3. The line integral of the function f
over a parameterized curve Kr is defined by∫

Kr
f dµ =

∫ b

a
f (r(u)) Jacobianr(u)du , (24-4)

where the Jacobian function Jacobianr(u) is given by:

Jacobianr(u) = |r′(u)| . (24-5)

The Jacobian function Jacobianr(u) thus denotes the length of the tangent vector
r′(u) to the curve at the position r(u).

Note that the symbol that is on the left-hand side of the equality sign in (24-4)
only is a symbol for the line integral. The integral which we shall compute is on
the right-hand side. And this is possible to integrate, because both f , r and |r′|
are continuous, such that the integrand is continuous.

If we substitute r(u) = (x(u), y(u), z(u)) in the expression for the line integral we get:∫
Kr

f dµ =
∫ b

a
f (x(u), y(u), z(u))

√
x′(u)2 + y′(u)2 + z′(u)2 du . (24-6)

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Jacobi.html
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Figure 24.4: A helix in 3D space parameterized in two different ways. See Example 24.3.

Remark 24.6

The parametric representation (24-1) of the curve is regular if the Jacobian function
of the parametric representation is positive: Jacobianr(u) = |r′(u)| > 0 for all u in
the given interval [a, b] .

Example 24.7 A Weighted Circle

Given the function f (x, y, z) = 7x and a parameterized circle segment

Cr : r(u) = (x(u), y(u), z(u)) = (cos(u), sin(u), 0) , u ∈ [−π

2
, π] .

The line integral of f over Cr is∫
Cr

f dµ =
∫ π

−π/2
f (x(u), y(u), z(u))

√
x′(u)2 + y′(u)2 + z′(u)2 du

=
∫ π

−π/2
7 cos(u)

√
(− sin(u))2 + (cos(u))2 du

=
∫ π

−π/2
7 cos(u) du = 7 .
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Figure 24.5: A knot. See Example 24.4

As mentioned above and as we will substantiate below – in section 24.1.1 about Moti-
vation for the Line Integral – the line integral can be applied for finding lengths of pa-
rameterized curves and to find the total mass of parameterized curves with given mass
densities. If the mass density is the constant 1 we get the length (i.e. one can find the
length of such a curve by determining its weight):

Definition 24.8 The Length of a Curve

The length of the parameterized curve

Kr : r(u) = (x(u), y(u), z(u)) , u ∈ [a, b]

is defined as the line integral

L(Kr) =
∫

Kr
1 dµ =

∫ b

a
|r′(u)|du . (24-7)
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Example 24.9 The Length of a Circle Segment

The parameterized circle segment

Cr : r(u) = (cos(u), sin(u), 0) , u ∈ [−π

2
, π]

has the length

L(Cr) =
∫

Cr

1 dµ =
∫ π

−π/2

√
x′(u)2 + y′(u)2 + z′(u)2 du

=
∫ π

−π/2

√
(− sin(u))2 + cos(u))2 du

=
∫ π

−π/2
1 du =

3 π

2
.

Example 24.10 More Than One Circular Winding

The parameterized plane Curve

C̃r : r(u) = (cos(u), sin(u), 0) , u ∈ [−π

2
, 7π]

has the length L(C̃r) = 15 π
2 corresponding to the fact that the parameterization ’winds’ the

long interval a number of times around the unit circle!

Example 24.11 The Length of a Plane Spiral

The parameterized plane spiral (see Figure 24.6)

Kr : r(u) = ( u cos(u), u sin(u), 0 ) , u ∈ [0, π/2]

has the length

L(Kr) =
∫

Kr

1 dµ =
∫ π/2

0

√
x′(u)2 + y′(u)2 + z′(u)2 du

=
∫ π/2

0

√
(cos(u)− u sin(u))2 + (sin(u) + u cos(u))2 du

=
∫ π/2

0

√
1 + u2 du

=
[
(1/2)u

√
1 + u2 + (1/2) arcsinh(u)

]π/2

0

= (π/4)
√

1 + (π/2)2 + (1/2) arcsinh(π/2)

= (π/8)
√

4 + π2 + (1/2) ln(2)− (1/2) ln(−π +
√

4 + π2)

= 2.079 .

(24-8)
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Figure 24.6: Part of a plane spiral. See Example 24.11.

Example 24.12 The Length of the Ellipsis

The length of an ellipsis. The parameterized ellipsis (see Figure 24.7)

Kr : r(u) = ( a cos(u), b sin(u), 0 ) , u ∈ [−π, π]

has the length

L(Kr) =
∫

Kr

1 dµ =
∫ π

−π

√
x′(u)2 + y′(u)2 + z′(u)2 du

=
∫ π

−π

√
a2 sin2(u) + b2 cos2(u) du

= 4aE

√
1 −

(
b
a

)2
 ,

where E denotes the so-called complete elliptic integral of the 2nd order. About the function
E(u) we only mention here that the function value in u = 0 is E(0) = π/2, such that the
result above means that when the ellipsis becomes a circle, i.e. when a = b, then we get the
correct circumference of the circle with radius a: L = 2πa .

Example 24.13 The Length of the Helix

The parameterized helix

Kr : r(u) = (cos(u), sin(u), u) , u ∈ [−2π, 2π]
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Figure 24.7: An Ellipsis with semi-axes a = 1 and b = 2. See Example 24.12.

has the length

L(Kr) =
∫

Kr

1 dµ =
∫ 2π

−2π

√
x′(u)2 + y′(u)2 + z′(u)2 du

=
∫ 2π

−2π

√
(− sin(u))2 + (cos(u))2 + 1 du

=
∫ 2π

−2π

√
2 du = 4π

√
2 .

Definition 24.14 One-to-One Parametric Representation

The parametric representation (24-1) of the curve Kr is said to be one-to-one if for all
u1 ∈ [a, b] and for all u2 ∈ [a, b] the following applies:

u1 ̸= u2 implies that r(u1) ̸= r(u2) . (24-9)
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Exercise 24.15

Which of the parametric representations in the figures 24.1, 24.2, and 24.4 – and in the exam-
ples 24.9, 24.10 and 24.13, respectively – are one-to-one?

Exercise 24.16

Show that Definition 24.8 gives the same length for the three parameterizations of the line
segment in Figure 24.1, the same length of the two circle segments in Figure 24.2 and the
same length of the two helices in Figure 24.4.

Exercise 24.17

Find the length (with 3 decimals) of the knot in Figure 24.5.

Exercise 24.18

Find regular, one-to-one parametric representations of the line segment (Figure 24.1), the
circle (Figure 24.2), and the helix (Figure 24.4), such that all parametric representations have
the common parameter interval [0, π ] .

24.1.1 Motivation for the Line Integral

If we equidistantly partition the interval [a, b] in n parts, then every subinterval has the
length δu = (b − a)/n and the coordinates of the division points in [a, b] become:

u1 = a,
u2 = u1 + δu = a + δu,
u3 = u2 + δu = a + 2δu,
u4 = u3 + δu = a + 3δu,

....
b = un + δu = a + nδu .

(24-10)
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Using these chosen values of ui as development points we can use Taylor’s limit formula
for each of the 3 coordinate functions x(u), y(u), and z(u) of r(u) = (x(u), y(u), z(u))
to first order and with the corresponding epsilon functions as follows, see eNote 21:

x(u) = x(ui) + x′(ui) (u − ui) + εx(u − ui) · |u − ui|
y(u) = y(ui) + y′(ui) (u − ui) + εy(u − ui) · |u − ui|
z(u) = z(ui) + z′(ui) (u − ui) + εz(u − ui) · |u − ui| .

(24-11)

These 3 formulas we can gather and express with vector notation like this:

r(u) = r(ui) + r′(ui) · (u − ui) + εi(u − ui) · ρi , (24-12)

where we use the short way of writing ρi = |u − ui| =
√
(u − ui)2 for the distance

between the variable value u and the given value ui in the parameter interval. Fur-
thermore we have that the vector εi(u − ui) = ( εx(u − ui), εy(u − ui), εz(u − ui) ) →
(0, 0, 0) = 0 for u → ui .

Every subinterval [ui, ui + δu] on the u-axis is mapped onto the curve segment r(u),
u ∈ [ui, ui + δu] , and this curve segment we can approximate with the linear part of the
expression in (24-12) that is found by removing the εi-term from the right-hand side in
(24-12):

rapp i
(u) = r(ui) + r′(ui) · (u − ui) , u ∈ [ui, ui + δu] . (24-13)

See the figures 24.8 and 24.9 where the approximating line segments are shown for a
parameterized circle, for two different parameterizations and for different values of n.
The i’th line segment by definition is in contact with the curve in one of its end points.
This we call the contact point for the line segment.

The Length of a Curve

Each of the in total n approximating line segments has a length, see Figure 24.8. The
length of the i’th line segment is, according to (24-13),

∆ Li = |rapp i
(ui + δu)− rapp i

(ui)| = |r′(ui)| · δu . (24-14)

The sum of these n lengths is (for large values of n) clearly a good approximation to the
length of the curve, so that we can write

Lapp(n) =
n

∑
i=1

∆ Li =
n

∑
i=1

|r′(ui)| · δu , (24-15)
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Since the above sum is an integral sum (see eNote 23) for the continuous function |r′(u)|
over the interval [a, b] , we get in the limit, where n goes towards infinity:

Lapp(n) → L =
∫ b

a
|r′(u)|du for n → ∞ . (24-16)

By this we have motivated the definition of the length of a curve as stated above, viz. as
the line integral of the constant function 1 over the parameterized curve.

Figure 24.8: The curve r(u) = (cos(2πu), sin(2πu), 0) , u ∈ [−1, 1] , with 10, 20, and 30
approximating line segments, respectively. It is reasonable to define the length of the curve
as the total length of the approximating line segments in the limit where the number of line
segments tends toward infinity.

Figure 24.9: The curve r(u) =
(
cos(2πu3), sin(2πu3), 0

)
, u ∈ [−1, 1] , with 30, 60 and 100

approximating line segments. It is reasonable to define the length of the curve as the total length
of the approximating line segments in the limit where the number of approximating line seg-
ments tends towards infinity.
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Mass, the Weight of a Curve with Mass Density

If we assume that every individual line segment in (24-13) is allotted a constant mass
density given by the value of the function f (x, y, z) in contact point of the line segment
with the curve, then we get the mass of the i’th line segment:

∆ Mi = f (x(ui), y(ui), z(ui)) |r′(ui)| · δu = f (r(ui)) |r′(ui)| · δu .

The total mass of the whole system of line segments is therefore the following, which is
a good approximation to the mass of the whole curve when the curve is given the mass
density f (r(u)) at the position r(u) :

Mapp(n) =
n

∑
i=1

∆ Mi =
n

∑
i=1

f (r(ui)) |r′(ui)| · δu . (24-17)

Again this is an integral sum, but now for the continuous function f (r(u)) |r′(u)| over
the interval [a, b] . Thus we get in the limit, where n tends toward infinity:

Mapp(n) → M =
∫ b

a
f (r(u))|r′(u)|du for n → ∞ . (24-18)

We have thus motivated the definition of the mass of a curve with the mass density
f (r(u)) (inasmuch this function is positive in [a, b] ) and hereby the general definition
of the line integral, Definition 24.5.

24.2 Plane Integrals

A parameterized region in the plane is given by a parametric representation

Pr : r(u, v) = (x(u, v), y(u, v)) ∈ R2 , u ∈ [a, b] , v ∈ [c, d] , (24-19)

where x(u, v) and y(u, v) are given (typically smooth) functions of the two parameter
variables u and v.

Plane integrals are written, named, and computed quite analogously to line integrals:
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Figure 24.10: This region in the plane is given by the following parametric representation that
represents polar coordinates in the plane: r(u, v) = (u cos(v), u sin(v)) , u ∈ [0, 1] , v ∈ [−π, π] .
The parametrized rectangle is seen to the left. This is deformed and mapped (by the use of r) on
the plane region in the middle. To the right the placement and the size (apart from a factor 4) of
the approximating parallelograms (here, rectangles) corresponding to the given net.

Definition 24.19 Plane Integrals

Let f (x, y) denote a continuous function on R2. The plane integral of the function f
over the parameterized region Pr is defined by∫

Pr
f dµ =

∫ d

c

∫ b

a
f (r(u, v)) Jacobianr(u, v)du dv , (24-20)

where the Jacobian function Jacobianr(u, v),

Jacobianr(u, v) = |r′u(u, v)| · |r′v(u, v)| · sin(θ(u, v)) , (24-21)

is the area of the parallelogram in the plane, that at the position r(u, v) is spanned
by the two tangent vectors r′u(u, v) and r′v(u, v) to the respective coordinate curves
through the point r(u, v) in the plane (the function θ(u, v) ∈ [0, π] denotes the angle
between these tangent vectors).
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Figure 24.11: A plane region with parabolic coordinates. This region in the plane is given by
the parametric representation r(u, v) = (u v, 1

2 (u
2 − v2)) , u ∈ [−2, 2] , v ∈ [0, 2] . The Figure

to the right again hints at a system of area-approximating parallelograms apart from a factor 4.

Definition 24.20 Regular Parametric Representation of a Region in the
Plane

The parametric representation (24-19) is said to be a regular parametric representation
of the plane region if the following applies:

Jacobianr(u, v) > 0 for all u ∈ [a, b] , v ∈ [c, d] . (24-22)

Definition 24.21 One-to-One Parametric Representations

As for parameterized curves the parametric representation in (24-19) is said to be
one-to-one if different points in the domain are mapped to different points in the
range in the plane.

Exercise 24.22

Show that Jacobianr(u, v) (in (24-21)) can also be found as the numerical value of the deter-
minant of the (2 × 2) matrix that as columns has the coordinates of the two vectors r′u(u, v)
and r′v(u, v).



eNote 24 24.2 PLANE INTEGRALS 17

Example 24.23 Standard Graph-Bounded Region

Let f (x) denote a positive function on an x-interval [a, b]. Then we can parameterize the
region between the x-axis and the graph of the function f (x) in the following simple way:

Pr : r(u, v) = (u, v · f (u)) , u ∈ [a, b] , v ∈ [0, 1] . (24-23)

See Figure 24.12 (where the function f (x) = 1 + x + x2 is used as an illustration). For the
determination of the area of the region between the graph of f (x) and x-axis we now have
generally:

Jacobianr(u, v) = f (u) , (24-24)

because
r′u(u, v) = (1, v · f ′(u)) and

r′v(u, v) = (0, f (u)) ,
(24-25)

such that the determinant of the matrix that has the columns r′u(u, v) and r′v(u, v), exactly in
this case is the function f (u) itself and thereby the Jacobian function is also given by f (u)
according to Exercise 24.22. From this we get the wanted area reconstructed as:

Area(Pr) =
∫

Pr

1 dµ =
∫ 1

0

(∫ b

a
f (u)du

)
dv

=
∫ b

a
f (u)du .

(24-26)

Consider what happens to the integral in (24-26) if we allow f (x) to be negative on given
subintervals of [a, b].

Figure 24.12: Parameterization of the region between the x-axis and the graph of the function
f (x) = 1 + x + x2. See Example 24.23.
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Example 24.24 Elliptic Region

The parameterized elliptic region in the plane (see Figure 24.13)

Pr : r(u, v) = ( av cos(u), bv sin(u) ) , u ∈ [−π, π] , v ∈ [0, 1] .

has the area

Area(Pr) =
∫

Pr

1 dµ =
∫ 1

0

∫ π

−π
abv du dv = abπ ,

since Jacobianr(u, v) = abv . Compare with the computation of the length of the ellipsis in
Example 24.12.

Figure 24.13: An elliptic region in the plane with semi-axes a = 1 and b = 2. See Example
24.24. Note that the approximating parallelograms (here shown scaled) are not rectangles.

Exercise 24.25 Level-Bounded Elliptic Region

An elliptic region in the plane is bounded by the level curve K0( f ) of the quadratic polyno-
mial

f (x, y) = 2 · x2 + 2 · y2 + 2 · x · y − 8 · x − 10 · y + 13 . (24-27)

Determine the length of the level curve and determine the area of the bounded elliptic region
in the (x, y) plane. See Figure 24.14.
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Figure 24.14: An elliptic region in the plane is bounded by an ellipsis that is the level curve
K0( f ) of the quadratic polynomial f (x, y) = 2 · x2 + 2 · y2 + 2 · x · y − 8 · x − 10 · y + 13. See
Exercise 24.25.

Example 24.26 Spiral Region

The parameterized spiral-bounded region in the plane (see Figure 24.15)

Pr : r(u, v) = ( vu cos(u), vu sin(u) ) , u ∈ [ 0, π/2] , v ∈ [ 0, 1] .

has the area

Area(Pr) =
∫

Pr

1 dµ =
∫ 1

0

∫ π/2

0
v2u du dv = π3/48 ,

since Jacobianr(u, v) = v2u . Compare with the computation of the length of the spiral in
Example 24.11.

24.2.1 Motivation for the Plane Integral

If we, in analogy to the statement of the line integral, partition both the parameter in-
tervals [a, b] and [c, d] in n and m equal parts, then every u-subinterval has the length
δu = (b − a)/n and every v-subinterval has the length δv = (d − c)/m. Correspond-
ingly the coordinates of the division points in the (u, v)-parameter region (that is the
rectangle [a, b]× [c, d] in R2 ) - cf. eNote 20:
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Figure 24.15: A spiral-bounded region in the plane. See Example 24.26.

(u1, v1) = (a, c),
(u1, vj) = (a, c + (j − 1)δv),

(ui, v1) = (a + (i − 1)δu, c),
(ui, vj) = (a + (i − 1)δu, c + (j − 1)δv),

....
(b, d) = (a + nδu, c + mδv) .

(24-28)

With all these given points (ui, vj) as development points we can again use Taylor’s
limit formula, now for each of the 2 coordinate functions x(u, v) and y(u, v) of r(u, v) =
(x(u, v), y(u, v)) to the first order with corresponding epsilon functions:

r(u, v) = r(ui, vj)

+ r′u(ui, vj) · (u − ui)

+ r′v(ui, vj) · (v − vj)

+ ρij · εij(u − ui, v − vi) ,

(24-29)

where u ∈ [ ui , ui + δu ] , v ∈
[

vj , vj + δv
]

. Here ρij =
√
(u − ui)2 + (v − vj)2 de-

notes the distance between the variable point (u , v) and the given development point
(ui , vj) in the parametrized region. Here it applies that the vector function εij(u −
ui, v − vj) → (0, 0) = 0 for (u − ui, v − vj) → (0, 0) .

Every sub-rectangle [ui, ui + δi]× [vj, vj + δj] is mapped onto the plane subregion, which
we can describe by r(u, v) evaluated in the parameter-subrectangle u ∈ [ui, ui + δu], v ∈
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[vj, vj + δv] and this subregion we can approximate with the expression (24-29) that
again exactly can be found by removing the εij-term from the right-hand side from
(24-29):

rapp ij
(u, v) = r(ui, vj) + r′u(ui, vj) · (u − ui) + r′v(ui, vj) · (v − vj) , (24-30)

with u and v still running through the sub-intervals u ∈ [ ui , ui + δu ] , v ∈
[

vj , vj + δv
]

.

These linear approximations are parallelograms that are spanned by the two tangent
vectors r′u(ui, vj) · δu and r′v(ui, vj) · δv.

Area of a Plane Region

Each of the (in total) n · m approximating parallelograms has an area. The area of the
(i, j)th parallelogram is given by

∆ Areaij = |r′u(ui, vj)| · |r′v(ui, vj)| sin(θ(ui, vj)) · δu · δv

= Jacobianr(ui, vj) · δu · δv .
(24-31)

Exercise 24.27

Prove this statement: The area of a parallelogram is the product of the lengths of the two
spanning vectors and the sine of the interjacent angle. See eNote 10.

The sum of all these (in total) n m areas is clearly a good approximation to the area of
the whole surface segment, so that we have

Areaapp(n, m) =
m

∑
j=1

n

∑
i=1

∆ Areaij =
m

∑
j=1

n

∑
i=1

Jacobianr(ui, vj) · δuδv . (24-32)

since the sum above is a double integral sum for the continuous function Jacobianr(u, v)
over the parametrized rectangle [a, b]× [c, d] we get in the limit, where n and m both
tend to infinity (see eNote 23 ):

Areaapp(n, m) → Area =
∫ d

c

∫ b

a
Jacobianr(u, v)du dv for n , m → ∞ . (24-33)

This is the reason for the definition of the area of a parameterized region in the plane as
stated above, viz. as the surface integral of the constant function 1.
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Mass, Weight of a Plane Region

If we now assume that every individual parallelogram in (24-30) is allotted a constant
mass density given by the value of the function f (x, y) at the contact point of the paral-
lelogram with the surface, then we get the mass of the (i, j)th parallelogram :

∆ Mij = f (x(ui, vj), y(ui, vj)) Jacobianr(ui, vj) · δuδv

= f (r(ui, vj)) Jacobianr(ui, vj) · δuδv .
(24-34)

The total mass of the whole system of parallelograms is therefore the following, which
is a good approximation to the mass of all of the plane region when this is given the
masse density f (r(u, v)) in the point r(u, v).

Mapp(n, m) =
m

∑
j=1

n

∑
i=1

∆ Mij =
m

∑
j=1

n

∑
i=1

f (r(ui, vj)) Jacobianr(ui, vj) · δuδv . (24-35)

This is a double integral sum for the continuous function f (r(u, v)) Jacobianr(u, v) over
the parametrized rectangle [a, b]× [c, d] . Thus we get in the limit, where n and m tend
towards infinity:

Mapp(n, m) → M =
∫ d

c

∫ b

a
f (r(u, v))Jacobianr(u, v)du dv for n , m → ∞ .

(24-36)

Hereby we have motivated the definition of the mass of a parameterized region in the
plane with the mass density f (r(u, v)) and hereby also the general definition of plane
integral, Definition 24.19.

Example 24.28 Total Weight of a Ring-Shaped Region

Let f (x, y) = 1+ x be a weight function on the plane region in the (x, y) plane that is bounded
by the x-axis and the two upper semi-circular arcs of the circles with the radii 1 and 1/2,
respectively, both centred at (0, 0), see Figure 24.16. A parameterization of the area is e.g.:

Pr : r(u, v) = (u · cos(v), u · sin(v)) , where u ∈ [1/2, 1] , v ∈ [0, π] . (24-37)

When the region locally has the weight given by the weight function f (x, y) the total weight
of the region becomes:

M(Pr) =
∫

Pr

f dµ =
∫ π

0

∫ 1

1/2
f (r(u, v)) · Jacobianr(u, v)du dv , (24-38)
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where
f (r(u, v)) = 1 + x(u, v) = 1 + u · cos(v) and

Jacobianr(u, v) = u ,
(24-39)

such that

M(Pr) =
∫ π

0

∫ 1

1/2
(1 + u · cos(v)) · u du dv

=
∫ π

0

[
1
2

u2 +
1
3

u3 · cos(v)
]u=1

u=1/2
dv

=
∫ π

0

(
3
8
+

7
24

· cos(v)
)

dv

=

[
3
8

v +
7

24
· sin(v)

]v=π

v=0

=
3
8
· π .

(24-40)

The total mass of the region with the given weight distribution is therefore M(Pr) = 3π/8. By
way of comparison the area of the region is also Area(Pr) = 3π/8 – but this is a coincidence.

Figure 24.16: Half a circular ring-shaped region in the plane with a weight distribution indi-
cated by shading. See Example 24.28.
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24.3 Summary

We have in this eNote stated the concepts and methods that give us precise expressions
for lengths of curves, areas of plane regions and more general curve- and plane-integrals
of (weight-)functions on curves and plane regions that are parameterized from an inter-
val or a rectangular parametrized region, respectively. Curve- and plane-integrals are
stated by use of the respective Jacobian functions that describe how much the parame-
ter interval or the parametrized region, respectively, is deformed locally when mapped
into the wanted curve or into the wanted plane region with the chosen vector maps r(u)
and r(u, v).

• For a space curve Kr with parametric representation r(u) = (x(u), y(u), z(u)) we
have the following motivated line integral of the function f (x, y, z) over the space
curve: ∫

Kr
f dµ =

∫ b

a
f (r(u)) Jacobianr(u)du , (24-41)

where the Jacobian function Jacobianr(u) is given by the length of the tangent
vector of the parameterization:

Jacobianr(u) = |r′(u)| . (24-42)

• For a plane region Pr with the parametric representation r(u, v) = (x(u, v), y(u, v))
we have similarly motivated the following definition of the plane integral of the
function f (x, y) over the region:∫

Pr
f dµ =

∫ d

c

∫ b

a
f (r(u, v)) Jacobianr(u, v)du dv , (24-43)

where the Jacobian function Jacobianr(u, v) now is given by the area of the paral-
lelogram spanned by the tangent vectors of the coordinate curves:

Jacobianr(u, v) = |r′u(u, v)| · |r′v(u, v)| · sin(θ(u, v)) , (24-44)

where θ(u, v) ∈ [0, π] denotes the angle between the two tangent vectors r′u(u, v)
and r′v(u, v).
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