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eNote 22

Quadratic Equations with Two and Three
Variables

In this eNote we will again consider the quadratic polynomials with two and three variables
that are also treated and investigated by means of different techniques in eNote 20 and 21 and
19, respectively. In the introductory treatment of functions of two variables we defined the level
sets Kc( f ) of functions f (x, y) of two variables, see eNote 19. In this eNote we shall see that for
quadratic polynomials with two variables the level sets are typically well-known curves in the
(x, y) plane as e.g. ellipses and hyperbolas and it is the purpose of this eNote to show types of
level curves that appear for given equations. To do so we will extensively use the method of
reduction developed in eNote 21. It works for quadratic polynomials of both two and three (and
more) variables and as we shall see, the corresponding level curves and surface can be identified
from a short namelist. The level curves for quadratic polynomials with two variables and the
level surfaces for quadratic polynomials with three variables are classically known under the
names conic sections and quadratic surfaces.

Updated: 31.1.2023, shsp.

22.1 Quadratic Equations with Two Variables

From eNote 18 we know from inspection of the level curves shown that ellipses and
hyperbolas or ellipsis-like and hyperbola-like curves are typically level curves of func-
tions of two variables – in particular around stationary points. This is no coincidence;
quadratic polynomials have exactly such level curves. And suitably chosen quadratic
polynomials are at the same time good approximations to given smooth functions of
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two variables.

In the following we will through some examples go through the standard method for
reduction of the equations that appear when we find those points in R2 for which a
given quadratic polynomial is 0, that is, exactly those points that constitute the level set
K0( f ) of f (x, y).

Example 22.1 Ellipsis

For a quadratic polynomial f (x, y) we determine the following ingredients for the reduction
of polynomials in exactly the same way as presented in eNote 21. In particular we again
need the positive orthogonal substitution matrix Q that diagonalizes the matrix 1

2 · H f (x, y)
in order to obtain an expression of f (x, y) that does not include product terms – now in the
new coordinates x̃ and ỹ. The result of the reduction is f̃ (x̃, ỹ) as shown below:

f (x, y) = 2 · x2 + 2 · y2 + 2 · x · y − 8 · x − 10 · y + 13 .

∇ f (x, y) = (4 · x + 2 · y − 8 , 2 · x + 4 · y − 10) .

1
2
· H f (x, y) =

[
2 1
1 2

]
.

Λ =

[
3 0
0 1

]
.

Q =

[ √
2/2 −

√
2/2√

2/2
√

2/2

]
=

[
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

]
.

f̃ (x̃, ỹ) = 3 · x̃2 + ỹ2 − 9 ·
√

2 · x̃ −
√

2 · ỹ + 13

= 3 ·
(

x̃ − 3
2
·
√

2
)2

+

(
ỹ − 1

2
·
√

2
)2

− 1 .

(22-1)

The last equation in the above computation of the reduced quadratic polynomial f̃ (x̃, ỹ) ap-
pears through completing the square. This can be done first for the x̃-terms and then for the
ỹ-terms. For the x̃-terms it goes like this:

3 · x̃2 − 9 ·
√

2 · x̃ = 3 · (x̃2 − 3 ·
√

2 · x̃)

= 3 ·
((

x̃ − 3
2

√
2
)2

− 9
2

)
.

(22-2)



eNote 22 22.1 QUADRATIC EQUATIONS WITH TWO VARIABLES 3

The quadratic equation that gives the level curve K0( f ) is now determined by either of the
following equivalent equations:

f (x, y) = 0 = f̃ (x̃, ỹ)

(
x̃ − 3

2 ·
√

2
1√
3

)2

+

(
ỹ − 1

2
·
√

2
)2

= 1 .

(22-3)

The last equation describes an ellipsis with its centre at eC = (x0, y0) = (1, 2) (with respect to
the old coordinates) corresponding to vC = (x̃0, ỹ0) = ( 3

2 ·
√

2 , 1
2 ·

√
2) (with respect to the

new coordinates) and the semi-axes 1√
3

and 1 , see Figures 22.1 and 22.2. The new coordinate
system appears by a rotation of the old coordinate system with rotation angle ϕ = π/4.

The function f (x, y) has a stationary point at the centre of the ellipsis, where the function
value is −1. The Hessian matrix is positive definite and therefore the stationary point is a
proper local minimum point. Obviously we are talking about a global minimum point.

Figure 22.1: The graph of the function f (x, y) = 2 · x2 + 2 · y2 + 2 · x · y − 8 · x − 10 ·
y + 13 together with level curves and the gradient vector field of the function. Note in
particular the level curve corresponding to level 0, which is the ellipsis we analyse in
Example 22.1.
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Figure 22.2: The graph of the function with the elliptical level curve at level 0 of the
function in Example 22.1.

Example 22.2 Ellipsis

f (x, y) = 29 · x2 + 36 · y2 + 24 · x · y − 152 · x − 336 · y + 620 .

∇ f (x, y) = (58 · x + 24 · y − 152 , 72 · y + 24 · x − 336) .

1
2
· H f (x, y) =

[
29 12
12 36

]
.

Λ =

[
45 0
0 20

]
.

Q =

[
3/5 −4/5
4/5 3/5

]
.

f̃ (x̃, ỹ) = 45 · x̃2 + 20 · ỹ2 − 360 · x̃ − 80 · ỹ + 620

= 45 · (x̃ − 4)2 + 20 · (ỹ − 2)2 − 180 .

(22-4)

The quadratic equation that gives the level curve K0( f ) is therefore given by any of the fol-
lowing equivalent equations:

f (x, y) = 0 = f̃ (x̃, ỹ)(
x̃ − 4

2

)2

+

(
ỹ − 2

3

)2

= 1 .
(22-5)
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Figure 22.3: The graph of the function that is only lifted 1/2 as compared to values of
the function in Example 22.1. The level curve K0( f ) at level 0 is correspondingly smaller
with correspondingly smaller semi-axes, but its orientation with respect to the axis is
the same.

This is the equation describing an ellipsis with its centre at eC = (x0, y0) = (4/5, 22/5)
(with respect to the old coordinates) corresponding to vC = (x̃0, ỹ0) = (4, 2) (with respect
to the new coordinates) and the semi-axes 2 and 3, see Figure 22.4. The new coordinate sys-
tem appears by rotation of the old coordinate system with the rotation angle ϕ = arccos(3/5).

The quadratic polynomial f (x, y) has a stationary point at the centre with the value −180.
The Hessian matrix is positive definite and therefore the stationary point is a proper local
minimum point with the minimum value −180. Again it is obviously a global minimum
point.
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Figure 22.4: The level curve K0( f ) of the quadratic polynomial f (x, y) = 29 · x2 + 36 ·
y2 + 24 · x · y − 152 · x − 336 · y + 620 from Example 22.2.

Example 22.3 Hyperbola

We consider again Example 19.44 from eNote 19 about the quadratic polynomial f (x, y) with
the following data:

f (x, y) = 11 · x2 + 4 · y2 − 24 · x · y − 20 · x + 40 · y − 60 .

∇ f (x, y) = (22 · x − 24 · y − 20 , −24 · x + 8 · y + 40) .

1
2
· H f (x, y) =

[
11 −12
−12 4

]
.

Λ =

[
20 0
0 −5

]
.

Q =

[
4/5 3/5
−3/5 4/5

]
=

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

]
, where φ = − arcsin(3/5) .

f̃ (x̃, ỹ) = 20 · x̃2 − 5 · ỹ2 − 40 · x̃ + 20 · ỹ − 60

= 20 · (x̃ − 1)2 − 5 · (ỹ − 2)2 − 60 .
(22-6)

The quadratic equation producing the level curve K0( f ) is therefore given by any of the
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following equations:
f (x, y) = 0 = f̃ (x̃, ỹ)(

x̃ − 1√
3

)2

−
(

ỹ − 2
2 ·

√
3

)2

= 1 .
(22-7)

The equations describe a hyperbola with its centre at eC = (x0, y0) = (2, 1) (with respect
to the old coordinates) corresponding to vC = (x̃0, ỹ0) = (1, 2) (with respect to the new
coordinates) and the semi-axes

√
3 and 2 ·

√
3. The new coordinate system appears through

a rotation of the old coordinate system with the rotation angle ϕ = − arcsin(3/5).

The function has a stationary point at the centre with the value −60. The Hessian matrix
is indefinite and therefore the stationary point is neither a local minimum point nor a local
maximum point.

Example 22.4 Hyperbola

Another hyperbola is given by K0( f ) of the following quadratic polynomial:

f (x, y) = −5
4
· x2 +

1
4
· y2 +

3
2
·
√

3 · x · y + 5 · x − 3 ·
√

3 · y − 21
4

.

∇ f (x, y) = (−5
2
· x +

3
2
·
√

3 · y + 5 ,
3
2
·
√

3 · x +
1
2
· y − 3 ·

√
3) .

1
2
· H f (x, y) =

[
−5/2 3 ·

√
3/4√

3/4 1/4

]
.

Λ =

[
1 0
0 −2

]
.

Q =

[
1/2 −

√
3/2√

3/2 1/2

]
=

[
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

]
.

f̃ (x̃, ỹ) = x̃2 − 2 · ỹ2 − 2 · x̃ − 4 ·
√

3 · ỹ − 21
4

= (x̃ − 1)2 − 2 · (ỹ +
√

3)2 − 1
4

.

(22-8)

The quadratic equation that gives the level curve K0( f ) is therefore given by any of the fol-
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lowing equivalent equations, where the last is found by completing the square:

f (x, y) = 0 = f̃ (x̃, ỹ) = 0(
x̃ − 1

1
2

)2

−
(

ỹ +
√

3
1

2·
√

2

)2

= 1 .
(22-9)

This is a hyperbola with its centre at eC = (x0, y0) = (2, 0) (with respect to the old coordinates)
corresponding to vC = (x̃0, ỹ0) = (1,−

√
3) (with respect to the new coordinates) and the

semi-axes 1/2 and 1/(2 ·
√

2), see Figure 22.5. The new coordinate system appears through
a rotation of the old coordinate system by the rotation angle ϕ = π

3 .

The function has a stationary point at the centre with value −1/4. The Hessian matrix is
indefinite and therefore the stationary point is neither a local minimum point nor a local
maximum point, which is also evident from Figure 22.5.

Figure 22.5: The graph of the function from example 22.4 intersected at level 0, the
gradient field, level curves and in particular the level curve K0( f ).

22.2 Quadratic Equations with Three Variables

For quadratic polynomials f (x, y, z) with three variables we can carry through the same
analysis as above but now of the level sets in (x, y, z) space, i.e. the level surfaces that
appear by setting f (x, y, z) = 0. We show the method through some examples:
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Example 22.5 Ellipsoid

A quadratic polynomial with three variables is investigated:

f (x, y, z) = 7 · x2 + 6 · y2 + 5 · z2 − 4 · x · y − 4 · y · z − 2 · x + 20 · y − 10 · z + 15 .

∇ f (x, y, z) = (14 · x − 4 · y − 2,−4 · x + 12 · y − 4 · z + 20,−4 · y + 10 · z − 10) .

1
2
· H f (x, y, z) =

 7 −2 0
−2 6 −2
0 −2 5

 .

Λ =

 9 0 0
0 6 0
0 0 3

 .

Q =

 2/3 −2/3 −1/3
−2/3 −1/3 −2/3
1/3 2/3 −2/3

 .

f̃ (x̃, ỹ, z̃) = 9 · x̃2 + 6 · ỹ2 + 3 · z̃2 − 18 · x̃ − 12 · ỹ − 6 · z̃ + 15

= 9 · (x̃ − 1)2 + 6 · (ỹ − 1)2 + 3 · (z̃ − 1)2 − 3 .
(22-10)

The quadratic equation that gives the level surface K0( f ) is therefore given by either of the
following equivalent equations:

f (x, y, z) = 0 = f̃ (x̃, ỹ, z̃)(
x̃ − 1

1√
3

)2

+

(
ỹ − 1

1√
2

)2

+ (z̃ − 1)2 = 1 .
(22-11)

This is the equation describing an ellipsoid with its centre at eC = (x0, y0, z0) =

(−1/3,−5/3, 173) (with respect to the old coordinates) corresponding to vC = (x̃0, ỹ0, z̃0) =

(1, 1, 1) (with respect to the new coordinates) and the semi-axes 1√
3

and 1√
2
, and 1, see Figure

22.6 and the Name Table 22.3. The new coordinate system appears through a rotation of the
old coordinate system by the positive orthogonal substitution Q.
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Figure 22.6: The level surface K0( f ) of the function that is analysed in example 22.5. The
new rotated coordinate system in which the ellipsoid has the reduced form is indicated
by the red x̃-axis, blue ỹ-axis, and green z̃-axis.

The function f (x, y, z) investigated in Example 22.5 has a stationary point at
the centre found with the value −3. The Hessian matrix is positive definite
and therefore the stationary point of f (x, y, z) in (x, y, z) space is a proper local
minimum point, a global minimum point.

If we could draw the graph of the function f (x, y, z) in the 4-dimensional
(x, y, z, w) space, i.e. if we considered the set of those points in R4 that can be
written in the form (x, y, z, f (x, y, z)) when (x, y, z) runs through the (x, y, z)
space in R4, then the level surface of f (x, y, z) will be the set we get in (x, y, z)
space by putting w = 0, i.e. exactly f (x, y, z) = 0.
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Example 22.6 Hyperboloid with One Net

f (x, y, z) = x2 + 2 · y2 + z2 + 2 · x − 4 · y + 2 · z − 4 · x · z − 1 .

∇ f (x, y, z) = (2 · x − 4 · z + 2,−4 · y − 4,−4 · x + 2 · z + 2) .

1
2
· H f (x, y, z) =

 1 0 −2
0 2 0
−2 0 1

 .

Λ =

 3 0 0
0 2 0
0 0 −1

 .

Q =

 −
√

2/2 0 −
√

2/2
0 1 0√
2/2 0 −

√
2/2

 .

(22-12)

f̃ (x̃, ỹ, z̃) = 3 · x̃2 + 2 · ỹ2 − z̃2 − 4 · ỹ − 2 ·
√

2 · z̃ − 1

= 3 · x̃2 + 2 · (ỹ − 1)2 −
(

z̃ +
√

2
)2

− 1 .
(22-13)

The quadratic equation that gives the level surface K0( f ) is therefore given by either of the
following equivalent equations:

f (x, y, z) = 0 = f̃ (x̃, ỹ, z̃)(
x̃
1√
3

)2

+

(
ỹ − 1

1√
2

)2

−
(

z̃ +
√

2
)2

= 1 .
(22-14)

The equations represent a hyperboloid with one net that has its centre at eC = (x0, y0, z0) =

(1, 1, 1) (with respect to the old coordinates) corresponding to vC = (x̃0, ỹ0) = (0, 1,−
√

2)
(with respect to the new coordinates) and the semi-axes 1√

3
, 1√

2
, and 1, see Figure 22.7 and

the Table of names in 22.3. The new coordinate system appears through a rotation of the old
coordinate system by the positive orthogonal substitution Q.

The function f (x, y, z), investigated in 22.6, has a stationary point at the centre
found with the value −1. The Hessian matrix is indefinite and therefore the
stationary point of f (x, y, z) in (x, y, z) space is neither a minimum point nor a
maximum point.



eNote 22 22.2 QUADRATIC EQUATIONS WITH THREE VARIABLES 12

Figure 22.7: The level surface K0( f ) of the function that is analyzed in Example 22.6.

Example 22.7 Hyperboloid with Two Nets

A quadratic polynomial f (x, y, z) is given by the following data:

f (x, y, z) = −x2 +
1
2
· y2 +

1
2
· z2 + 2 · x + 4 · y + 4 · z − 5 · y · z − 6 .

∇ f (x, y, z) = (−2 · x + 2, y − 5 · z + 4,−5 · y + z + 4) .

1
2
· H f (x, y, z) =

 −1 0 0
0 1/2 −5/2
0 −5/2 1/2

 .

Λ =

 3 0 0
0 2 0
0 0 −1

 .

Q =

 0 1 0
−
√

2/2 0
√

2/2√
2/2 0

√
2/2

 .

f̃ (x̃, ỹ, z̃) = 3 · x̃2 − ỹ2 − 2 · z̃2 + 2 · ỹ + 4 ·
√

2 · z̃ − 6

= 3 · x̃2 − (ỹ − 1)2 − 2 ·
(

z̃ −
√

2
)2

− 1 .

(22-15)



eNote 22 22.3 TABLE OF NAMES OF LEVEL SURFACES OF QUADRATIC
POLYNOMIALS 13

The quadratic equation describing the level surface K0( f ) is therefore given by:

f (x, y, z) = 0 = f̃ (x̃, ỹ, z̃)(
x̃
1√
3

)2

− (ỹ − 1)2 −
(

z̃ −
√

2
1√
2

)2

= 1 .
(22-16)

This is the equation of a hyperboloid with two nets that has its centre at eC = (x0, y0, z0) =

(1, 1, 1) (with respect to the old coordinates) corresponding to vC = (x̃0, ỹ0) = (0, 1,
√

2)
(with respect to the new coordinates) and semi-axes 1√

3
, 1√

2
and 1 – see Figure 22.8.

Figure 22.8: A hyperboloid with two nets is the level surface K0( f ) of the function
analyzed in Example 22.7.

22.3 Table of Names of Level Surfaces of Quadratic
Polynomials

The maximallt reduced expressions of the level surfaces of Quadratic polynomials are
here presented with the assumption that a possible centre (or so-called vertex) occurs
invC = (0, 0, 0). For a given concrete level surface the name can be read from the table;
the location is stated by the coordinates of the centre C found of the level surface; the
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orientation is stated by the substitution matrix Q found and the size of the level surface
is stated by the individual semi-axes a, b, and c, or p and k in each case if they appear in
the reduced equation of the level surface.

Equation Name Point (0, 0, 0) Example
x̃2

a2 +
ỹ2

b2 +
z̃2

c2 = 1 ellipsoid centre 22.5
x̃2

a2 +
ỹ2

b2 − z̃2

c2 = 1 hyperboloid with one net centre 22.6
x̃2

a2 −
ỹ2

b2 − z̃2

c2 = 1 hyperboloid with two nets centre 22.7
x̃2

a2 +
ỹ2

b2 − z̃2

c2 = 0 conic surface centre fig 22.9
x̃2

a2 +
ỹ2

b2 = z̃ elliptic paraboloid vertex fig 22.9
x̃2

a2 −
ỹ2

b2 = z̃ hyperbolic paraboloid vertex fig 22.9
x̃2

a2 = p · z̃ parabolic cylinder surface vertex fig 22.9
x̃2

a2 +
ỹ2

b2 = 1 elliptic cylinder surface centre
x̃2

a2 −
ỹ2

b2 = 1 hyperbolic cylinder surface vertex
x̃2

a2 +
ỹ2

b2 +
z̃2

c2 = 0 the point (0, 0, 0) ”centre”
x̃2

a2 +
ỹ2

b2 = 0 the z̃-axis
x̃2

a2 −
ỹ2

b2 = 0 two planes through the z̃-axis
x̃2 = k > 0 two planes parallel to the (ỹ, z̃) plane
x̃2 = 0 the (ỹ, z̃) plane

Figure 22.9: A conic surface, an elliptic paraboloid, a hyperbolic paraboloid, and a
parabolic cylinder surface.
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Exercise 22.8

Show that the list in the Table of Names of level surfaces of quadratic polynomials with
three variables is complete; i.e. every fully reduced quadratic equation with three variables
(containing at least one of the variables x̃, ỹ, or z̃ with degree 2) can be found in the list.

Exercise 22.9

Show that every fully reduced quadratic equation with two variables appears in the table
with fully reduced quadratic equations with three variables by setting z̃ = 0.

22.4 Parametrization of an Ellipsoid

Here we will outline how to parametrize a level surface of a quadratic polynomial with
three variables in preparation for plotting the surface and investigating its other prop-
erties. As an example we consider an ellipsoid with given (or found) centre C, given
semi-axes (read from the diagonal matrix Λ), and given orientation vectors ev1, ev2, and
ev3 (from the positive orthogonal substitution matrix Q) – i.e. exactly from the data de-
termined through the reduction-analysis exemplified above.

We assume for the sake of the example that we are talking about an ellipsoid so that
A = 1

2 · H f (x, y, z) is positive definite, i.e. all three eigenvalues λ1, λ2, and λ3 are posi-
tive for A = 1

2 ·H f (x, y, z). A similar construction can be carried out for any of the other
level surfaces.

We assume that the equation of the ellipsoid in reduced form is given by

λ1 · (x̃ − x̃0)
2 + λ2 · (ỹ − ỹ0)

2 + λ3 · (z̃ − z̃0)
2 = d2 , (22-17)

where d is a positive constant and where vC = (x̃0, ỹ0, z̃0) are the coordinates of the
centre of the ellipsoid with respect to the new coordinate system, such that centre-
coordinates with respect to the old coordinate system are given by: eC = Q · vC. Thus
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we have the following ingredients at our disposal for the construction of the ellipsoid:

eC = (C1, C2, C3)

a =
d√
λ1

b =
d√
λ2

c =
d√
λ3

Q =
[

ev1 ev2 ev3
]

.

(22-18)

We will only consider coordinates refering to the ordinary basis e in (Rn, ·).

A spherical surface S1 with radius 1 and centre at (0, 0, 0) can be written as the set of
points (x, y, z) having the distance 1 to (0, 0, 0):

ρ(0,0,0)(x, y, z) = 1 , equivalent to√
x2 + y2 + z2 = 1 , or

x2 + y2 + z2 = 1 .

(22-19)

The spherical surface can also be presented by the use of geographical coordinates u and
v, where u ∈ [0, π] and v ∈ [−π, π]:

S : (x, y, z) = r(u, v) = (sin(u) · cos(v), sin(u) · sin(v), cos(u)) . (22-20)

When u and v run through their respective intervals u ∈ [0, π] and v ∈ [−π, π] we get
points (x, y, z) = r(u, v) on the spherical surface – and all points are represented. Let us
look at the first of the two statements, i.e. all points r(u, v) lie on the spherical surface.
Substitute x = sin(u) · cos(v), y = sin(u) · sin(v), and z = cos(u) into Equation 22-19:

x2 + y2 + z2 = sin2(u) · cos2(v) + sin2(u) · sin2(v) + cos2(u)

= sin2(u) ·
(

sin2(u) + cos2(u)
)
+ cos2(u)

= sin2(u) + cos2(u) = 1 ,

(22-21)

so all points that are given in the form r(u, v) lie on the spherical surface.
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Exercise 22.10

Show that the other statement about r(u, v) is also true, i.e. that all points on the spherical
surface are represented by r(u, v) when u and v run through the intervals u ∈ [0, π] and
v ∈ [−π, π]. Do points on the spherical surface exist that are hit more than once? In that case
describe the set of points and ’how many times’ the points are hit.

We now scale the spherical surface with the eigenvalues in each coordinate axis direc-
tion and by this we get a description with the correct, sought-for semi-axes:

r1(u, v) = (
d√
λ1

· sin(u) · cos(v),
d√
λ2

· sin(u) · sin(v),
d√
λ3

· cos(u)) , (22-22)

where u ∈ [0, π] , v ∈ [−π, π] such that every point x, y, z represented by the map
r1(u, v) now satisfies:

λ1 · x2 + λ2 · y2 + λ3 · z2 = d2

 x
d√
λ1

2

+

 y
d√
λ2

2

+

 z
d√
λ3

2

= 1

(22-23)

or, if we use the names a, b, and c for the semi-axes:(x
a

)2
+
(y

b

)2
+
(z

c

)2
= 1 , (22-24)

which is exactly the equation of a standard ellipsoid with the wanted semi-axes but con-
structed in the (x, y, z) system. The points that are described by r1(u, v) all lie on this
ellipsoid.

Finally we rotate the ellipsoid with the rotation matrix Q and use a parallel displace-
ment to the wanted centre:

r2(u, v) = Q · r1(u, v) + C . (22-25)

All the points given by the positional vector r2(u, v) now lie on the wanted ellipsoid and
all points on the ellipsoid are presented when u ∈ [0, π] , v ∈ [−π, π].
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Example 22.11 Ellipsoid Parametrization

A concrete ellipsoid is given by the following data resulting from an investigation of the
quadratic polynomial

f (x, y, z) = 2 · x2 + 2 · y2 + 2 · z2 − 2 · x − 4 · y − 2 · z − 2 · x · z + 3 : (22-26)

eC = (1, 1, 1)

a =
1√
3

b =
1√
2

c = 1

Q =

 −1/
√

2 0 −1/
√

2
0 1 0

1/
√

2 0 −1/
√

2

 .

(22-27)

We will construct a parametric representation in the form r2(u, v) as in (22-25) for the given
ellipsoid. The scaled spherical surface is given by:

r1(u, v) =
(

1√
3
· sin(u) · cos(v),

1√
2
· sin(u) · sin(v), cos(u)

)
(22-28)

and the Q-rotated scaled spherical surface translated to the point (1, 1, 1) then gets the para-
metric representation:

r2(u, v) =

= (− 1√
6
· sin(u) · cos(v)− 1√

2
· cos(u) + 1 ,

1√
2
· sin(u) · sin(v) + 1 ,

1√
6
· sin(u) · cos(v)− 1√

2
· cos(u) + 1) .

(22-29)

The construction is shown in Figure 22.10.
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Figure 22.10: Construction of Example 22.11 ellipsoid from data about placement, axes,
and rotation matrix.

Example 22.12 Ellipsoid Data

The ellipsoid constructed in example 22.11 is the 0-level surface of the quadratic polynomial
with the following data:

f (x, y, z) = 2 · x2 + 2 · y2 + 2 · z2 − 2 · x − 4 · y − 2 · z − 2 · x · z + 3 .

∇ f (x, y, z) = (4 · x − 2 · z − 2 , 4 · y − 4 , −2 · x + 4 · z − 2) .

1
2
· H f (x, y, z) =

 2 0 −1
0 2 0
−1 0 2

 .

Λ =

 3 0 0
0 2 0
0 0 1

 .

Q =

 −
√

2/2 0 −
√

2/2
0 1 0√
2/2 0 −

√
2/2

 .

f̃ (x̃, ỹ, z̃) = 3 · x̃2 + 2 · ỹ2 + z̃2 − 4 · ỹ + 2 ·
√

2 · z̃ + 3

= 3 · x̃2 + 2 · (ỹ − 1)2 +
(

z̃ +
√

2
)2

− 1 .

(22-30)
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The quadratic equation that gives the level surface K0( f ) is therefore given by the equation:(
x̃
1√
3

)2

+

(
ỹ − 1

1√
2

)2

+
(

z̃ +
√

2
)2

= 1 , (22-31)

from which we read the above given semi-axes a = 1√
3
, b = 1√

2
, and c = 1 together with the

centre coordinates v(C) = (0, 1,−
√

2) corresponding , via the substitution matrix Q, to the
coordinates e(C) = (1, 1, 1) with respect to the standard-basis e.
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22.5 Summary

The main outcome in this eNote is an identification – via a series of concrete exam-
ples – of the possible level curves and surfaces of quadratic polynomials with two and
three variables. The method is the reduction method for quadratic forms and quadratic
polynomials introduced in eNote 18. Based on the same method a strategy for the
parametrization and presentation of the individual level surfaces of functions of three
variables is given.
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