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eNote 21

Taylor’s Limit Formula for Functions of
Two Variables

In eNote 4 we studied Taylor’s limit formula for one variable and found approximating
polynomials of arbitrarily high degree for given functions. For functions of two variables a
similar formula applies, but we will only develop this formula to approximations with quadratic
polynomials. We can also use Taylor’s limit formula to investigate the functional values at and
in the neighbourhood of every point where the function is smooth. In particular we will first use
the formula to find and investigate local and global maxima and minima of the functions.

Updated: 31.1.2023, shsp.

21.1 Derivatives of Higher Degree

In this eNote we will investigate the functions f (x, y) of two variables in a set M that is
a subset of the domain of f (x, y) in the plane, M ⊂ D( f ) ⊂ R2.

We will assume that the function is partially differentiable to any order, that is, all
derivatives exist for every (x, y) in the interior of M: f ′x(x, y), f ′y(x, y), f ′′xx(x, y), f ′′xy(x, y),
f ′′yy(x, y), f ′′′xyx(x, y) etc. We will use these higher-order derivatives to construct (the coef-
ficients in) the approximating polynomials of two variables exactly as we did for func-
tions of one variable.
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Definition 21.1

If a function f (x, y) is partially differentiable to an arbitrary order at every point
(x, y) in the interior M̊ of a given set M in the plane, then we call the function smooth
in M̊.

Example 21.2 Higher-order Derivatives of Some Elementary Functions

Here are some first- and second-order derivatives of some well-known functions of two vari-
ables. Note that f ′′yx(x, y) cannot be seen explicitly in the table – this is because f ′′yx(x, y) =

f ′′xy(x, y) for all (x, y) when the functions are smooth, as we assume, see eNote 19. The func-
tion ρ(0,0)(x, y) =

√
x2 + y2 denotes the distance function from (0, 0) to (x, y); this is only

smooth for (x, y) ̸= (0, 0) as it appears for the shown first- and second-order partial deriva-
tives of ρ(0,0)(x, y) in the table. The function ρ2

(0,0)(x, y) = x2 + y2, on the other hand, is (as
appears from the table) a smooth function over its entire domain, i.e. for all (x, y) ∈ R2.
Similarly this also applies for the square of the distance from an arbitrary point (x0, y0) i.e. the
function:

ρ2
(x0,y0)

(x, y) = (x − x0)
2 + (y − y0)

2 .

f (x, y) f ′x(x, y) f ′y(x, y) f ′′xx(x, y) f ′′xy(x, y) f ′′yy(x, y)

ex ex 0 ex 0 0
ex+y ex+y ex+y ex+y ex+y ex+y

ex2+y2
2 · x · ex2+y2

2 · y · ex2+y2
(2 + 4 · x2) · ex2+y2

4 · x · y · ex2+y2
(2 + 4 · y2) · ex2+y2

ex·y y · ex·y x · ex·y y2 · ex·y ex·y + x · y · ex·y x2 · ex·y

ρ(0,0)(x, y) x√
x2+y2

y√
x2+y2

y2

(x2+y2)3/2 − x·y
(x2+y2)3/2

x2

(x2+y2)3/2

ρ2
(0,0)(x, y) 2 · x 2 · y 2 0 2

ρ2
(x0,y0)

(x, y) 2 · (x − x0) 2 · (y − y0) 2 0 2

In Example 21.2 the partial derivatives are shown in the same row in the table. In the
following it proves to be smart to gather or pack the partial derivatives, in particular the
two first-order derivatives to a vector, the gradient vector of f (x, y) at (x0, y0), that are
also introduced and applied in eNote 19:

∇ f (x0, y0) = ( f ′x(x0, y0), f ′y(x0, y0)) , (21-1)

but also the three second-order derivatives in a matrix H f (x0, y0) – the so-called Hessian
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matrix of the function f (x, y) – at the point (x0, y0), determined by

H f (x0, y0) =

[
f ′′xx(x0, y0) f ′′xy(x0, y0)

f ′′yx(x0, y0) f ′′yy(x0, y0)

]
. (21-2)

Note in particular that this matrix is symmetric because f ′′xy(x0, y0) =
f ′′yx(x0, y0). Therefore it has some special properties that are decisive in the
geometric analysis of functions to the second order.

Example 21.3 Gradients and Hessians

From the tabel we read the following gradients and Hessian matrices of the given elementary
smooth functions at the point (x0, y0):

f (x, y) ∇ f (x, y) H f (x, y)

ex (ex, 0)
[

ex 0
0 0

]
ex+y (ex+y, ex+y)

[
ex+y ex+y

ex+y ex+y

]
ρ2
(0,0)(x, y) = x2 + y2 (2 · x, 2 · y)

[
2 0
0 2

]
(x − x0) · ρ2

(x0,y0)
(x, y) (3 · (x − x0)2 + (y − y0)2,

2 · (x − x0) · (y − y0))

[
6 · (x − x0) 2 · (y − y0)

2 · (y − y0) 2 · (x − x0)

]

Note that the function f (x, y) = (x − x0) · ρ2
(x0,y0)

(x, y) has the gradient vector
0 and the Hessian matrix 0 when they are computed at the basis point (x0, y0)
of the distance function ρ(x0,y0)(x, y).

Exercise 21.4

Determine the gradient ∇ f (x, y) and the Hessian matrix H f (x, y) at every point (x, y) ∈ R2

of each of the following functions:

f (x, y) = cos(x + y) , f (x, y) = cos(x · y) , f (x, y) = x3 + y2 + x · y . (21-3)
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21.2 Approximation of Functions of Two Variables

Now we will compare the function f (x, y) with an arbitrary quadratic polynomial with
the two variables x and y and determine the coefficients in the polynomial by demand-
ing that the difference between the two shall be small close to the point x0.

The polynomial that we will test and use for the comparison is the following:

a + b1 · (x − x0) + b2 · (y − y0)

+

(
h11

2

)
· (x − x0)

2 + h12 · (x − x0) · (y − y0) +

(
h22

2

)
· (y − y0)

2 .
(21-4)

We will choose the coefficients a, b1, b2, h11, h12, and h22, so that the residual R(x, y) =
R2,(x0,y0)(x, y) in relation to f (x, y) becomes (numerically) as small as possible close to
the point (x0, y0) – just as we did when we motivated Taylor’s formulae for functions of
one variable in eNote 4:

f (x, y) = a + b1 · (x − x0) + b2 · (y − y0)

+

(
h11

2

)
· (x − x0)

2 + h12 · (x − x0) · (y − y0) +

(
h22

2

)
· (y − y0)

2

+ R(x, y) .

(21-5)

The quadratic polynomial that we use for the approximation in (21-5) is
a totally general quadratic polynomial; every quadratic polynomial can be
written in this form even if the values of x0 and y0 are given beforehand. Note
that there are 6 coefficients that are not yet determined: a, b1, b2, h11, h12,
og h22. And the set of quadratic polynomials is a vector space of exactly 6
dimensions!

The trick is to find the best values of these 6 coefficients, so that R(x, y) becomes
numerically small at and close to the point (x0, y0).

The residual function R(x, y) can be written as the difference between f (x, y) and the
polynomial:

R(x, y) = f (x, y)− a − b1 · (x − x0)− b2 · (y − y0)

−
(

h11

2

)
· (x − x0)

2 − h12 · (x − x0) · (y − y0)−
(

h22

2

)
· (y − y0)

2 .
(21-6)
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We will now state the natural requirements to the residual function – requirements that
secure that the residual function is very small at and in the neighborhood of (x0, y0) and
thus that the polynomial we find in this way is close to the function f (x, y).

Naturally the first requirement is that the residual function is 0 at (x0, y0). We substitute
this requirement into (21-6) and get:

R(x0, y0) = 0 yielding 0 = f (x0, y0)− a , (21-7)

whereby the constant term in the approximating polynomial is already determined:

a = f (x0, y0) . (21-8)

Of course the next requirement is R′
x(x0, y0) = R′

y(x0, y0) = 0 such that ∇R(x0, y0) =
(0, 0), which geometrically means that the graph of the residual function has a horison-
tal tangent plane – identical to the (x, y) plane – at (x0, y0). If we substitute these re-
quirements into R(x, y) in Equation (21-6) we get

R′
x(x0, y0) = 0 which yields 0 = f ′x(x0, y0)− b1 ,

R′
y(x0, y0) = 0 which yields 0 = f ′y(x0, y0)− b2 ,

(21-9)

whereby the coefficients b1 = f ′x(x0, y0) and b2 = f ′x(x0, y0) are also determined. We
have:

(b1, b2) = ∇ f (x0, y0) . (21-10)

The last requirement on R(x, y) we use is that all three second-order partial derivatives
of R(x, y) are also 0 at (x0, y0):

Substituting these 3 requirements into R(x, y) in Equation (21-6) we get

R′′
xx(x0, y0) = 0 which yields 0 = f ′′xx(x0, y0)− h11 ,

R′′
xy(x0, y0) = 0 which yields 0 = f ′′xy(x0, y0)− h12 ,

R′′
yy(x0, y0) = 0 which yields 0 = f ′′yy(x0, y0)− h22 .

(21-11)

By this the last 3 coefficients in the approximating polynomial are found.
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We can write the result like this – while keeping in mind that f ′′xy(x0, y0) = f ′′xy(x0, y0) =
h12: [

h11 h12
h12 h22

]
=

[
f ′′xx(x0, y0) f ′′xy(x0, y0)

f ′′yx(x0, y0) f ′′yy(x0, y0)

]
= H f (x0, y0) . (21-12)

Thus we have seen that the requirements posed to the residual function can be fulfilled,
and that the resulting quadratic polynomial that fulfills the requirements, precisely
therefore, deserves to be called the approximating polynomial of the second degree of f (x, y)
with the point of development (x0, y0):

Definition 21.5 Approximating Quadratic Polynomial

Let f (x, y) denote a smooth function in a set M in R2 that contains the point
(x0, y0) ∈ M̊. The polynomial

P2,(x0,y0)(x, y) = f (x0, y0) + f ′x(x0, y0) · (x − x0) + f ′y(x0, y0) · (y − y0)

+
1
2
· f ′′xx(x0, y0) · (x − x0)

2

+ f ′′xy(x0, y0) · (x − x0) · (y − y0)

+
1
2
· f ′′yy(x0, y0) · (y − y0)

2

(21-13)

is called the approximating polynomial of the second degree of the function f (x, y)
with the point of development (x0, y0).

Now – just like for functions of one variable – it is reasonable to expect that with the
requirements used on the residual function R(x, y) = R2,(x0,y0)(x, y) it must be numeri-
cally comparable to a power of the distance function ρ(x0,y0)(x, y) to the point of develop-
ment (x0, y0). E.g. from the last example in 21.3 we can see that all requirements that
we have posed on R(x, y) are fulfilled for the function (x − x0) · ρ2

(x0,y0)
(x, y).

This is precisely the content of the following theorem that expresses this by the use of
an epsilon function, this of course not normally being as simple as (x − x0):
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Lemma 21.6 The Residual Function with an Epsilon Term

Given a smooth function f (x, y). Then the residual function R2,(x0,y0)(x, y) can be
written in the following form:

R2,(x0,y0)(x, y) = ρ2
(x0,y0)

(x, y) · ε f (x − x0, y − y0) , (21-14)

where ε f (x − x0, y − y0) is an epsilon function of (x − x0, y − y0), i.e.

ε f (x − x0, y − y0) → 0 for (x, y) → (x0, y0) . (21-15)

We now have all the ingredients to the main theorem of this eNote:

Theorem 21.7 Taylor’s Limit Formula for Functions of Two Variables

Every smooth function f (x, y) of two variables can be split into an approximating
quadratic polynomial at a given point of development (x0, y0) and a residual func-
tion with an epsilon term in this way:

f (x, y) = P2,(x0,y0)(x, y) + R2,(x0,y0)(x, y)

= f (x0, y0) + f ′x(x0, y0) · (x − x0) + f ′y(x0, y0) · (y − y0)

+
1
2
· f ′′xx(x0, y0) · (x − x0)

2

+ f ′′xy(x0, y0) · (x − x0) · (y − y0)

+
1
2
· f ′′yy(x0, y0) · (y − y0)

2

+ ρ2
(x0,y0)

(x, y) · ε f (x − x0, y − y0) .

(21-16)

By using the gradient of f (x, y) and the Hessian matrix of f (x, y) we can write Taylor’s
limit formula (21-16) in a more compact form that we will use in what follows with re-
spect to a geometric analysis of f (x, y) at and close to the point of development (x0, y0):
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Theorem 21.8 Taylor’s Limit Formula, Compact, Geometric

Every smooth function f (x, y) of two variables is the sum of an approximating
quadratic polynomial with a given point of development (x0, y0) and a residual
function like this:

f (x, y) = f (x0, y0) +∇ f (x0, y0) · (x − x0, y − y0)

+
1
2
·
[

x − x0 y − y0
]
· H f (x0, y0) ·

[
x − x0
y − y0

]
+ ρ2

(x0,y0)
(x, y) · ε f (x − x0, y − y0) ,

(21-17)

where
∇ f (x0, y0) = ( f ′x(x0, y0), f ′y(x0, y0)) and

H f (x0, y0) =

[
f ′′xx(x0, y0) f ′′xy(x0, y0)

f ′′yx(x0, y0) f ′′yy(x0, y0)

]
.

(21-18)

Proof

A direct computation of the following matrix product shows that (21-17) is equivalent to
(21-16), and this is the only new thing in the theorem:

[
x − x0 y − y0

]
· H f (x0, y0) ·

[
x − x0

y − y0

]
=

[
x − x0 y − y0

]
·
[

f ′′xx(x0, y0) f ′′xy(x0, y0)

f ′′yx(x0, y0) f ′′yy(x0, y0)

]
·

[
x − x0

y − y0

]
= f ′′xx(x0, y0) · (x − x0)

2

+ 2 · f ′′xy(x0, y0) · (x − x0) · (y − y0)

+ f ′′yy(x0, y0) · (y − y0)
2 .

(21-19)

■

The approximating quadratic polynomial of f (x, y) with the point of development (x0, y0)
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is therefore in compact form :

P2,(x0,y0)(x, y) = f (x0, y0) +∇ f (x0, y0) · (x − x0, y − y0)

+
1
2
·
[

x − x0 y − y0
]
· H f (x0, y0) ·

[
x − x0
y − y0

]
.

(21-20)

Note that the approximating linear polynomial of f (x, y) is exactly the linear
part (linearization) of the approximating quadratic polynomial:

P1,(x0,y0)(x, y) = f (x0, y0) +∇ f (x0, y0) · (x − x0, y − y0). (21-21)

In eNote 20 we saw that the geometric interpretation of P1,(x0,y0)(x, y) is that the
graph of the approximating linear polynomial P1,(x0,y0)(x, y) (i.e. the plane z =
P1,(x0,y0)(x, y) in (x, y, z) space) exactly is the tangent plane to the graph surface of
f (x, y) at the point (x0, y0, f (x0, y0)).

Definition 21.9 Stationary Points of Functions of Two Variables

Let f (x, y) denote a smooth function in a set M in D( f ) ⊂ R2. By a stationary point
of f (x, y) we will understand any point (x0, y0) in M̊ where the gradient of f (x, y)
is (0, 0).

Thus at a stationary point of f (x, y) we have:

∇ f (x0, y0) =
(

f ′x(x0, y0), f ′y(x0, y0)
)
= (0, 0) . (21-22)

Geometrically the definition 21.9 means that (x0, y0) is a stationary point in
M̊ of f (x, y) if the tangent plane for the graph of f (x, y) through the point
(x0, y0, f (x0, y0)) is horisontal, i.e. parallel to the (x, y) plane, such that the unit
normal vector to the graph surface at the point (x0, y0, f (x0, y0)) is N(x0,y0)( f ) =
(0, 0, 1).
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21.3 Functional Investigations

Just like for continuous functions of one variable the functional values f (x, y) are bounded
if the region of investigation is sufficiently nice:

Theorem 21.10 Main Theorem for Continuous Functions of Two Variables

Let f (x, y) denote a function that is continuous in all of its domain D( f ) ⊂ R2. Let
M be a bounded, closed, and connected set in D( f ).

Then the range of the function f (x, y) in the set M is a bounded, closed, and con-
nected interval [ A , B ] ⊂ R, in short:

R( f|M) = f (M) = { f (x) | x ∈ M} = [ A , B ] , (21-23)

where we still allow for the possibility of A = B and this happens naturally exactly
when f (x, y) is constant in all of M.

Exactly as for functions of one variable we now define:

Definition 21.11 Global Minimum and Global Maximum

When a function f (x, y) has the range R( f|M) = f (M) = [ A , B ] in a set M we say
that

1. A is the global minimum of f (x, y) in M, and if f (x0, y0) = A for (x0, y0) ∈ M
then (x0, y0) is a global minimum point of f (x, y) in M.

2. B is the global maksimum of f (x, y) in M, and if f (x0, y0) = B for (x0, y0) ∈ M
then (x0, y0) is a global maximum point of f (x, y) in M.

An entirely natural and very frequent problem is to find the global maxima and min-
ima of given functions f (x, y) in given sets M in R2 and at the same time determine the
(x, y) points in M for which these maxima and minima are found – that is, to determine
the minimum and maximum points.
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To solve this problem the following is a great help (just as in the investigation of func-
tions of one variable):

Lemma 21.12 Maxima and Minima at Stationary Points

Let (x0, y0) be a global maximum or minimum point of f (x, y) in M.

Assume that (x0, y0) is not a point on the boundary of the set M, i.e. we assume that
(x0, y0) is an interior point in M. Furthermore assume that f (x, y) is differentiable
at the point (x0, y0).

Then (x0, y0) is a stationary point of f (x, y) at (x0, y0) ∈ M̊:

( f ′x(x0, y0), f ′y(x0, y0)) = ∇ f (x0, y0) = 0 = (0, 0) . (21-24)

Proof

The proof follows a line of argument similar to that for functions of one variable. In
short: If ∇ f (x0, y0) ̸= (0, 0) then the functional values increase effectively in the direction
∇ f (x0, y0) from (x0, y0) and the functional values decrease effectively in the opposite direction
−∇ f (x0, y0) from (x0, y0) and thus (x0, y0) can neither be a minimum point nor a maximum
point.

■

Thus we have the method of investigation for functions of two variables:
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Method 21.13 Method of Investigation

Let f (x, y) be a continuous function and M a closed, bounded, and connected
region in the domain D( f ) ⊂ R2.

Maximum and minimum values of the function f (x, y), i.e. A and B of the range
[A, B] of f (x, y) in M, are found by computing and comparing the functional values
at the following points:

1. The boundary points of the set M.

2. The exceptional points, i.e. the points in the interior of M where the function
f (x, y) is not differentiable.

3. The stationary points, i.e. all the points (x0, y0) in the interior of M where the
function f (x, y) is differentiable and ( f ′x(x0, y0), f ′y(x0, y0) = ∇ f (x0, y0) = 0 =
(0, 0).

By this method of investigation we find not only the global maximum and
minimum values of A and B but also the (x, y) points in M ⊂ R2 for which
the function is equal to the the global maximum B and the global minimum A,
respectively, i.e the maximum and the minimum points in the actual region.

Example 21.14 Functional Investigation, Range

Let f (x, y) = 1 + x2 − x · y2. We will investigate the function in the closed and bounded
circular region M in the plane that is bounded by the circle with radius 1 and centre at (0, 0),
see Figure 21.1.

∇ f (x, y) = (2 · x + y2, 2 · y · x) . (21-25)

The function is differentiable in all of its domain D( f ) = R2. In the interior of M, i.e. the
open circular disc with radius 1 and centre at (0, 0) the function has exactly one stationary
point (x0, y0) = (0, 0) and the value of f (x0, y0) is f (0, 0) = 1. Since there are no exceptional
points of f (x, y) in the open circular disc it only remains for us to investigate the function on
the boundary of the region, i.e. the functional values on the circle with radius 1 and centre at
(0, 0). We parametrize the actual circle in the plane in the ordinary way:

r(u) = (cos(u), sin(u)) , u ∈ [−π, π] , (21-26)
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and substitute the points on the circle into the functional expression and thus obtain the fol-
lowing composite function that expresses the functional values on the circle when u traverses
the interval [−π, π]:

h(u) = f (r(u)) = 1 + cos2(u)− cos(u) · sin2(u) . (21-27)

We differentiate h(u) and find:

h′(u) = − sin(u) · (2 · cos(u) + 3 · cos2(u)− 1) (21-28)

that gives h′(u) = 0 for u = 0, u = ±π, and u = ± arccos(1/3). At these station-
ary points of the function h(u), h(u) assumes the values : h(0) = 2, h(±π) = 2, and
h(± arccos(1/3)) = 22/27, respectively.

By comparing all the possible values for maximum and minimum values of f (x, y) given by
the method 21.13 we conclude that the range of f (x, y) on the given circular disc is:

f (M) =

[
22
27

, 2
]

, (21-29)

and the maximum points and minimum points all exist on boundary of the circular region
and are respectively: maximum points (cos(0), sin(0)) = (1, 0) and (cos(±π), sin(±π)) =

(−1, 0); minimum points, (cos(± arccos(1/3)), sin(± arccos(1/3))) = (1/3,±2
√

2/3).

Definition 21.15 Local Minima and Local Maxima

Let f (x, y) denote a function in a region M that contains a given interior point
(x0, y0) ∈ M̊.

1. If f (x, y) ≥ f (x0, y0) for all (x, y) in a (generally small) neighborhood around
(x0, y0) i.e. for all (x, y) sufficiently close to (x0, y0), then f (x0, y0) is called a
local minimum value of f (x, y) in M, and (x0, y0) is a local minimum point of
f (x, y) in M. If actually f (x, y) > f (x0, y0) for all (x, y) in the neighborhood
except the point (x0, y0) itself, then f (x0, y0) is a proper local minimum value.

2. If f (x, y) ≤ f (x0, y0) for all (x, y) in a (generally small) neighborhood around
(x0, y0), then f (x0, y0) is a local maximum value of f (x, y) in M, and (x0, y0)
is a local maximum point of f (x, y) in M. If actually f (x, y) < f (x0, y0) for all
(x, y) in the neighborhood (except the point (x0, y0) itself), then f (x0, y0) is a
proper local maximum value.
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Figure 21.1: The graph of the function f (x, y) = 1 + x2 − x · y2. In the right part of the
figure the level curves and the gradient vector field of the function can be inspected.
The red circle is the boundary of the circular region that is considered in Example 21.14.
It is seen that the gradient vector field of f (x, y) is orthogonal to the circle precisely at the
4 points where the ’height’-functon h(u) has h′(u) = 0 viz. (±1, 0) and (1/3,±2

√
2/3).

21.4 Special Investigation at Stationary Points

If the function we wish to investigate is smooth at its stationary points, then we can
qualify the method 21.13 even better, because the approximating quadratic polynomial
with point of development at a stationary point (x0, y0) can be used to decide whether
the value of f (x, y) at the stationary point is a candidate to be a global maximum value
or a global minimum value.

A proper local minimum point in the interior of M cannot of course be a global
maximum point of f (x, y) in M and a proper maximum point in the interior of
M cannot be a global minimum point of f (x, y) in M.

For the local analysis of f (x, y) around a stationary point we will use the eigenvalues of
the Hessian matrix H f (x0, y0) of f (x, y) at the stationary point. As mentioned previ-
ously, the symmetry of H f (x0, y0) is an important property, for as we shall now see it
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means that H f (x0, y0) can be diagonalized by a similarity transformation, which we have
introduced and treated in eNote 10.

The following theorem about symmetric matrices is also important for many other ap-
plications. As is shown in eNote 19 the result can be generalized to arbitrary symmetric
matrices. For 2 × 2-matrices the proof is relatively simple, so we will go through the
reasoning below – as an appetizer for the general result.

Theorem 21.16 Diagonalization of Symmetric 2 × 2-Matrices

Every symmetric 2 × 2 matrix A has real eigenvalues λ1 and λ2 and A can be
diagonalized by a 2 × 2-similarity transformation D (change-of-base matrix) in
which the two column vectors are orthogonal unit eigenvectors of A.

This means that D−1 = D⊤ and

Λ =

[
λ1 0
0 λ2

]
,

A = D · Λ · D−1 = D · Λ · D⊤ , and

Λ = D−1 · A · D = D⊤ · A · D .

(21-30)

Proof

First we can directly see that every symmetric 2 × 2 matrix has real eigenvalues: The charac-
teristic polynomial of the symmetric matrix

A =

[
a b
b c

]
(21-31)

is
KA(λ) = (a − λ) · (c − λ)− b2 = λ2 − λ · (a + c) + (a · c − b2) , (21-32)

that has the roots (the eigenvalues)

λ1 =
1
2

(
a + c +

√
(a − c)2 + 4 · b2

)
and

λ2 =
1
2

(
a + c −

√
(a − c)2 + 4 · b2

)
,

(21-33)
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that both are real numbers.

The two eigenvalues are equal exactly when a = c and b = 0, that is when A is already in
diagonal form and is a product of the unit matrix – possibly the 0-matrix. In these cases we
can choose D = E.

If λ1 ̸= λ2 we also get directly from eNote 10,Theorem 10.4, that there exists a similarity
transformation D that diagonalizes A:

Λ = D−1 · A · D . (21-34)

The column vectors D are eigenvectors v1 and v2 corresponding to λ1 and λ2, respectively.

We will show that v1 and v2 are orthogonal vectors. Since A is symmetric we have

v1 · (Av2) = v2 · (Av1) ; (21-35)

this can be seen by a direct calculation using arbitrary vectors v1 and v2.

Since v1 is a proper eigenvector of A corresponding to λ1 and similarly v2 is a proper eigen-
vector of A corresponding to λ2 we get:

Av2 = λ2 · v2

Av1 = λ1 · v1 ,
(21-36)

which substituted into (21-35) yields:

λ2 · v1 · v2 = λ1 · v2 · v1 , (21-37)

so that
(v1 · v2) · (λ1 − λ2) = 0 . (21-38)

Since λ1 ̸= λ2 this equation can only be fulfilled for v1 · v2 = 0. The two eigenvectors are
therefore orthogonal as postulated in the theorem.

Next we can assume that the two eigenvectors v1 and v2 are unit vectors – if not we just
divide by their respective lengths and this will not change their ”eigenvector properties”.

The two unit eigenvectors are used as column vectors in the similarity transformation matrix
D, which thereby fulfills the following equation :

D⊤ · D = E , (21-39)

and thus
D⊤ = D−1 (21-40)

as wished for and postulated in the theorem .
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■

In particular the eigenvalues of the Hessian matrix are always two real numbers and
it is these eigenvalues we now will use in order to decide whether a given stationary
point is a proper maximum or minimum point.

Lemma 21.17 Local Analysis About a Stationary Point

Let f (x, y) be a smooth function and assume that (x0, y0) is a stationary point of
f (x, y) in an open region M̊ ⊂ D( f ) ⊂ R2. Let λ1(x0, y0) and λ2(x0, y0) denote the
eigenvalues of the Hessian matrix of f (x, y) at (x0, y0). The following applies:

1. If λ1(x0, y0) > 0 and λ2(x0, y0) > 0 then f (x0, y0) is a proper local minimum
value of f (x, y) .

2. If λ1(x0, y0) < 0 and λ2(x0, y0) < 0 then f (x0, y0) is a proper local maximum
value of f (x, y).

3. If λ1(x0, y0) · λ2(x0, y0) < 0 then f (x0, y0) is neither a local minimum value nor
a local maximum value of f (x, y).

4. If λ1(x0, y0) · λ2(x0, y0) = 0 then there is not enough information to decide
whether f (x0, y0) is either a local minimum value or a local maximum value
of f (x, y).

Proof

From Taylor’s limit formula we have at the stationary point the following representation of
f (x, y):

f (x, y) = f (x0, y0) +
1
2
·
[

x − x0 y − y0
]
· H f (x0, y0) ·

[
x − x0

y − y0

]
+ R2(x, y) . (21-41)

We diagonalize H f (x0, y0) with the similarity transformation D, cf. Theorem 21.16, so that

f (x, y) = f (x0, y0) +
1
2
·
[

x − x0 y − y0
]
· D ·

[
λ1 0
0 λ2

]
· D−1 ·

[
x − x0

y − y0

]
+ R2(x, y)

= f (x0, y0) +
1
2
·
([

x − x0 y − y0
]
· D

)
·
[

λ1 0
0 λ2

]
·
(

D⊤ ·
[

x − x0

y − y0

])
+ R2(x, y) ,

(21-42)
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where we note that the following two vectors are equal (apart from transposition)

([
x − x0 y − y0

]
· D

)⊤
=

(
D⊤ ·

[
x − x0

y − y0

])
=

[
α

β

]
. (21-43)

I.e. we can write in short form:

f (x, y) = f (x0, y0) +
1
2
·
[

α β
]
·
[

λ1 0
0 λ2

]
·
[

α

β

]
+ R2(x, y)

= f (x0, y0) +
1
2
·
(
λ1 · α2 + λ2 · β2)+ R2(x, y)

(21-44)

If both λ1 and λ2 are positive and λ1 ≥ λ2 > 0 we get directly from this:

f (x, y) ≥ f (x0, y0) + λ2 ·
(
α2 + β2)+ R2(x, y) . (21-45)

But we also have that α2 + β2 = (x − x0)2 + (y − y0)2 because D is so harmless:

α2 + β2 =
([

α β
]
· D⊤

)
·
(

D ·
[

α

β

])
=

[
x − x0 y − y0

]
·
[

x − x0

y − y0

]
= (x − x0)

2 + (y − y0)
2

= ρ2
(x0,y0)

(x, y) .

(21-46)

If we next introduce the residual R2(x, y) with an epsilon term, we finally get:

f (x, y) ≥ f (x0, y0) + ρ2
(x0,y0)

(x, y) · (λ2 + ε f (x − x0, y − y0)) . (21-47)

We can hereby conclude that for all (x, y) sufficiently close to (but different from) the point
of development (x0, y0) f (x, y) > f (x0, y0) because λ2 > 0 and ε f (x − x0, y − y0) → 0 for
(x, y) → (x0, y0).

Similarly it can be concluded that f (x, y) < f (x0, y0) for all points (x, y) sufficiently close to
(but different from) (x0, y0) if both eigenvalues are negative.

If λ1 > 0 and λ2 < 0 we can use (21-44) directly with β = 0 and α = 0, respectively, and
by this obtain values of f (x, y) that are larger and smaller than f (x0, y0), respectively, for the
corresponding points (x, y) sufficiently close to (but different from) (x0, y0) such that f (x0, y0)
can be neither a local minimum value nor a local maximum value. A similar conclusion is
obtained when λ1 < 0 and λ2 > 0.

■
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One could be led to believe that if only all second-order derivatives of f (x, y)
are positive at a stationary point (x0, y0) then the function must have a proper
minimum point at (x0, y0). But it is not that simple. E.g. the following Hes-
sian matrix does not have positive eigenvalues even though all elements are
positive:

H f (x, y) =
[

1 2
2 1

]
. (21-48)

The eigenvalues are λ1 = 3 and λ2 = −1, respectively, so according to Lemma
21.17 we can conclude that possible stationary points of f (x, y) are neither a
local maximum point nor minimum point of f (x, y).

The matrix shown is the constant Hessian matrix of the function

f (x, y) =
1
2
·
(

x2 + y2 + 4 · x · y
)

. (21-49)

The function has an obvious stationary point at (x0, y0) = (0, 0) but obviously
no proper minimum point at (0, 0), which can also be seen in Figur 21.2. The
function considered is its own approximating quadratic polynomial with de-
velopment point at (0, 0).

Figure 21.2: The graph of the function f (x, y) = 1
2 ·

(
x2 + y2 + 4 · x · y

)
is shown to the

left and the level curves of the function together with the gradient vector field to the
right.
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Example 21.18 Inspection of a Stationary Point

Let the function f (x, y) be given by

f (x, y) = x3 + y2 + x · y , ∇ f (x, y) = (3 · x2 + y, x + 2 · y) , H f (x, y) =
[

6 · x 1
1 2

]
.

Then (0, 0) is a stationary point of f (x, y) and the eigenvalues of H f (0, 0) are λ1(x0, y0) =

1 +
√

2 > 0 and λ2(x0, y0) = 1 −
√

2 < 0, respectively. See Figure 21.3. There is obviously
neither a local minimum nor a local maximum at the stationary point in accordance with
Lemma 21.17.

Figure 21.3: The graph of the function f (x, y) = x3 + y2 + x · y is shown to the left, the
graph of the approximating quadratic polynomial with the point of development (0, 0)
is shown in the middle, and both in the same plot to the right.

Exercise 21.19

The function f (x, y) = x3 + y2 + x · y which we investigated in Example 21.18 also has a
stationary point at (x0, y0) = (1/12 , −1/24). Investigate whether this stationary point is a
local maximum or a local minimum or neither of these of f (x, y).
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Figure 21.4: Level curves (black) and the gradient vector field of the function f (x, y) =
x3 + y2 + x · y together with some level curves (red) for the approximating quadratic
polynomial of f (x, y) around the stationary point (x0, y0) = (0, 0).

Example 21.20 Inspection of a Stationary Point

Let the function f (x, y) be given by the following data in R2:

f (x, y) = sin(x) · cos(x · y) ,

∇ f (x, y) = (cos(x) cos(x · y)− y · sin(x) · sin(x · y),−x · sin(x) · sin(x · y)) .
(21-50)

Then (x0, y0) = (π/2, 0) is a stationary point of f (x, y) and at this point we have

H f (π/2, 0) =
[
−1 0
0 −π2/4

]
(21-51)

In the stationary point the Hessian matrix thus has the eigenvalues −1 and −π2/4. We
conclude that the stationary point is a proper local maximum point of f (x, y) in accordance
with the inspection of Figure 21.5 – and in accordance with Lemma 21.17. The approximating
quadratic polynomial of f (x, y) with the development point at the stationary point (x0, y0) =

(π/2, 0) is:

P2,(π/2,0)(x, y) = 1 − 1
2

(
x − π

2

)2
− 1

2
· π2

4
· y2

=

(
1 − π2

8

)
+

π

2
· x − 1

2
· x2 − π2

8
· y2 .

(21-52)
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Figure 21.5: To the left: The graph of the function f (x, y) = sin(x) · cos(x · y). Centre:
The graph of the approximating quadratic polynomial of f (x, y) with the point of de-
velopment at the stationary point (π/2, 0). To the right: The gradient vector field of
the function f (x, y), its level curves (black) and the level curves of the approximating
quadratic polynomial (red).

Example 21.21 Inspection of a Stationary Point

Let the function f (x, y) be given by the following data in R2:

f (x, y) = 1 + x2 + (1 − y)2 + x · y ,

∇ f (x, y) = (2 · x + y, 2 · y − 2 + x) .
(21-53)

Then (x0, y0) = (−2/3 , 4/3) is a stationary point of f (x, y) and at this point we have as at
any other point

H f (x0, y0) =

[
2 1
1 2

]
(21-54)

Therefore at the stationary point the Hessian matrix has the eigenvalues 3 and 1. We conclude
that the stationary point is a proper local minimum point of f (x, y) in accordance with the
inspection of Figure 21.6 and in accordance with Lemma 21.17.

The approximating quadratic polynomial of f (x, y) with the point of development at the
stationary point (x0, y0) = (π/2, 0) is the function itself:

P2,(−2/3 , 4/3)(x, y) = f (x, y) . (21-55)
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Figure 21.6: To the left: The graph of the function f (x, y) = 1 + x2 + (1 − y)2 + x · y.
To the right: The gradient vector field of the function f (x, y), and its level curves (red)
around the stationary point (x0, y0) = (−2/3 , 4/3). Note that the function is its own
approximating quadratic polynomial with the point of development at the stationary
point.

Example 21.22 Inspection of a Stationary Point

Let the function f (x, y) be given by the following data in R2:

f (x, y) =
1
2
· sin(π · x2 + π · y2) ,

∇ f (x, y) = (π · x · cos(π · x2 + π · y2), π · y · cos(π · x2 + π · y2)) .
(21-56)

Then (x0, y0) = (0, 1/
√

2) is one of many stationary points of f (x, y) and at that point we
have

H f (x0, y0) =

[
0 0
0 −π2

]
. (21-57)

Therefore at the stationary point the Hessian matrix has the eigenvalues 0 and −π2 and
therefore Lemma 21.17 cannot decide whether we have a local maximum or minimum at
the point. But since f (0, 1/

√
2) = 1/2, which is the maximum value that f (x, y) can assume,

then (0, 1/
√

2) is a local maximum point of f (x, y) but it is not a proper local maximum point
because all points on the circle x2 + y2 = 1/2 are also local maximum points of f (x, y). See
also Figure 21.7.
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Figure 21.7: To the left: The graph of the function f (x, y) = 1
2 · sin(π · x2 + π · y2). In the

middle: The approximating quadratic polynomial of the function with the point of de-
velopment (0, 1/

√
2). To the right: The gradient vector field of the function f (x, y) and

its level curves (black) and the level curves of the approximating quadratic polynomial
(red) around the stationary point (x0, y0) = (0, 1/

√
2).

Example 21.23 Inspection of a Stationary Point

We consider a function f (x, y) that is defined by

f (x, y) =
1
5
·
(
1 − (1 − y)2 − x2) · (4 − (2 − y)2 − x2) . (21-58)

then (x0, y0) = (0, 0) is a stationary point of f (x, y) and at this point we have

H f (0, 0) =
[

0 0
0 16/5

]
(21-59)

In the stationary points the Hessian matrix has the eigenvalues 0 and 16/5. Therefore Lemma
21.17 cannot decide whether we have a local maximum or minimum at the point. It is,
though, relatively easy to see that arbitrarily close to (0, 0) points (x, y) exist in which the
functional values f (x, y) are negative; and at the same time arbitrarily close to (0, 0) points
(x, y) exist where the functional values f (x, y) are positive. See figure 21.8. Therefore the
stationary point (0, 0) is not a local minimum point of f (x, y).
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Figure 21.8: To the left: The graph of the function f (x, y) = 1
5 ·

(
1 − (1 − y)2 − x2) ·(

4 − (2 − y)2 − x2). Centre: The graph of f (x, y) together with the graph of the approx-
imating quadratic polynomial of the function with the point of development (0, 0). To
the right: The gradient vector field of the function f (x, y) and its level curves (black)
and the level curves of the approximating quadratic polynomial (red) around the sta-
tionary point (x0, y0) = (0, 0).

The function that is inspected in Example 21.23 has the following surprising
property: Let r(u) be the parametric representation of an arbitrary line through
r(0) = (0, 0). Then the composite (height) function h(u) = f (r(u)) has a
proper local minimum at u = 0. A complete investigation of a function of two
variables about a stationary point cannot be obtained by only investigating the
restrictions of the function to the straight lines through the point!
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21.5 Summary

This eNote is about the analysis of functions of two variables.

• We use the compact notation for the gradient vector field and the Hessianmatrix
given by the derivatives of f (x, y) until and including second order:

∇ f (x0, y0) = ( f ′x(x0, y0), f ′y(x0, y0)) , (21-60)

H f (x0, y0) =

[
f ′′xx(x0, y0) f ′′xy(x0, y0)

f ′′yx(x0, y0) f ′′yy(x0, y0)

]
. (21-61)

• The approximating polynomial of the second order of f (x, y) is then given by:

P2,(x0,y0)(x, y) = f (x0, y0) +∇ f (x0, y0) · (x − x0, y − y0)

+
1
2
·
[

x − x0 y − y0
]
· H f (x0, y0) ·

[
x − x0
y − y0

]
.

(21-62)

• Taylor’s limit formula for functions of two variables can thus be written

f (x, y) = f (x0, y0) +∇ f (x0, y0) · (x − x0, y − y0)

+
1
2
·
[

x − x0 y − y0
]
· H f (x0, y0) ·

[
x − x0
y − y0

]
+ ρ2

(x0,y0)
(x, y) · ε f (x − x0, y − y0) .

(21-63)

• Stationary points (x0, y0) of functions f (x, y) of two variables are characterized by
∇ f (x0, y0) = (0, 0).

• The eigenvalues of the Hessian matrix at a stationary point can assist us in the
decision whether the point is a proper local maximum or minimum point of a
smooth function f (x, y). If both eigenvalues are positive, then the point is a proper
local minimum point. If they both are negative then the point is a proper local
maximum point. If the eigenvalues both are different from 0 and are of opposite
sign then the point is neither a maximum nor a minimum point at the stationary
point.
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