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eNote 18

Linear Second-Order Differential
Equations with Constant Coefficients

Following eNotes 16 and 17 about differential equations, we now present this eNote about
second-order differential equations. Parts of the proofs closely follow the preceding notes and a
knowledge of these notes is therefore a prerequisite. In addition, complex numbers are used.

Updated: 15.11.21 David Brander

Linear second-order differential equations with constant coefficients look like this:

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, q : I → R (18-1)

a0, a1 ∈ R are constant coefficients of x(t) and x′(t), respectively. The right hand side
q(t) is a continuous real function, with the domain being an interval I (which could be
all of R ). The equation is called homogeneous if q(t) = 0 for all t ∈ I and otherwise
inhomogeneous.

The left hand side is linear in x, i.e., the map f : C∞(R)→ C∞(R) given by

f
(

x(t) ) = x′′(t) + a1x′(t) + a0x(t) (18-2)

satisfies the linearity requirements L1 and L2 . The method used in this eNote for solving
the inhomogeneous equation exploits this linearity.
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Method 18.1 Solutions and their structure

1. The general solution Lhom for a homogeneous linear second-order differential
equation

x′′(t) + a1x′(t) + a0x(t) = 0, t ∈ I (18-3)

where a0, a1 ∈ R , can be determined using Theorem 18.2.

2. The general solution set Linhom for an inhomogeneous linear second-order dif-
ferential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I , q : I → R, (18-4)

where a0, a1 ∈ R , can, using Theorem 12.14, be split into two:

(a) First the general solution Lhom to the corresponding homogeneous equation is
determined. This is produced by setting q(t) = 0 in (18-4).

(b) Then a particular solution x0(t) to (18-4) is determined e.g. by guessing.
Concerning this see section 18.2.

The general solution then has the following structure

Linhom = x0(t) + Lhom . (18-5)

18.1 The Homogeneous Equation

We now consider the linear homogeneous second-order differential equation

x′′(t) + a1x′(t) + a0x(t) = 0, t ∈ R , (18-6)

where a0 and a1 are real constants. We wish to determine the general solution. This can
be accomplished using exact formulas that depend on the appearance of the equation.
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Theorem 18.2 Solution to the Homogeneous Equation

The homogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = 0, t ∈ R, (18-7)

has the so-called characteristic equation

λ2 + a1λ + a0 = 0. (18-8)

The type of roots to this equation determines how the general solution Lhom to the
homogeneous differential equation will appear.

• Two different real roots λ1 and λ2 yield the solution

x(t) = c1eλ1t + c2eλ2t, t ∈ R. (18-9)

• Two complex roots λ = α± βi, with Im(λ) = ±β 6= 0, yield the real solution

x(t) = c1eαt cos(βt) + c2eαt sin(βt), t ∈ R. (18-10)

• The double root λ yields the solution

x(t) = c1eλt + c2teλt, t ∈ R. (18-11)

In all three cases the respective functions for all c1, c2 ∈ R constitute the general
solution Lhom.

In Section 17.4 you find the theory for rewriting this type of differential equa-
tion as a system of first-order differential equations.This method works here.
The system will then look like this:[

x′1(t)
x′2(t)

]
=

[
0 1
−a0 −a1

][
x1(t)
x2(t)

]
(18-12)

where x1(t) = x(t) and x2(t) = x′1(t) = x′(t). The problem can now be solved
using the theory and methods outlined in that section.
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Proof

The homogeneous second-order linear differential equation (18-7) is rewritten as a system of
first-order differential equations:[

x′1(t)
x′2(t)

]
=

[
0 1
−a0 −a1

][
x1(t)
x2(t)

]
= A

[
x1(t)
x2(t)

]
(18-13)

where x1(t) = x(t) is the wanted solution that constitutes the general solution. The proof
begins with the theorems and methods in Section 17.1. For the proof we need the eigenvalues
of the system matrix A:

det(A− λE) =
∣∣∣∣−λ 1
−a0 −a1 − λ

∣∣∣∣ = λ2 + a1λ + a0 = 0, (18-14)

which is also the characteristic equation for the differential equation. The type of roots of this
equation determines the solution x(t) = x1(t), which gives the following three parts of the
proof:

First part
The characteristic equation has two different real roots: λ1 and λ2. By using Method 17.4 we
obtain two linearly independent solutions u1(t) = v1eλ1t and u2(t) = v2eλ2t, where v1 and v2

are eigenvectors corresponding to the two eigenvalues , respectively. The general solution is
then spanned by:

x(t) = k1u1(t) + k2u2(t) = k1eλ1tv1 + k2eλ2tv2, (18-15)

for all k1, k2 ∈ R. The first coordinate x1(t) = x(t) is the solution wanted:

x1(t) = x(t) = c1eλ1t + c2eλ2t, (18-16)

which for all the arbitrary constants c1, c2 ∈ R constitutes the general solution. c1 and c2

are two new arbitrary constants and they are the products of the k-constants and the first
coordinates of the eigenvectors: c1 = k1v11 and c2 = k2v21 .

Second part
The characteristic equation has the complex pair of roots λ = α + βi and λ̄ = α − βi. It is
possible to find the general solution using Method 17.5.

x(t) = k1u1(t) + k2u2(t)

= k1eαt (cos(βt)Re(v)− sin(βt)Im(v)) + k2eαt (sin(βt)Re(v) + cos(βt)Im(v))

= eαt cos(βt) · (k1Re(v) + k2Im(v)) + eαt sin(βt) · (−k1Im(v) + k2Re(v)).

(18-17)

v is an eigenvector corresponding to λ and k1 and k2 are arbitrary constants. The first coordi-
nate x1(t) = x(t) is the wanted solution, and is according to the above given by

x1(t) = x(t) = c1eαt cos(βt) + c2eαt sin(βt). (18-18)
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For all c1, c2 ∈ R, x(t) constitutes the general solution. c1 and c2 are two new arbitrary
constants given by c1 = k1Re(v1) + k2Im(v1) and c2 = −k1Im(v1) + k2Re(v1). v1 is the first
coordinate of v.

Third part
The characteristic equation has the double root λ. Because of the appearance of the system
matrix (the matrix is equivalent to an upper triangular matrix) it is possible to see that the
geometric multiplicity of the corresponding eigenvector space is 1, and it is then possible to
use Method 17.7 to find the general solution.

x(t) = k1u1(t) + k2u2(t) = k1eλtv + k2(teλtv + eλtb) = eλt(k1v + k2b) + k2teλtv, (18-19)

where v is an eigenvector corresponding to λ, b is the solution to the system of equations
(A− λE)b = v, and k1, k2 are two arbitrary constants. Taking the first coordinate we get

x(t) = c1eλt + c2teλt, (18-20)

which for all c1, c2 ∈ R constitutes the general solution. c1d and c2 are two new arbitrary
constants, given by c1 = k1v1 + k2b1 and c2 = k2v1, in which v1 is the first coordinate in v, as
b1 is the first coordinate in b.

All the three different cases of roots of the characteristic equation have now been treated thus
proving the theorem.

Notice that it is also possible to arrive at the characteristic equation by guessing a
solution to the differential equation of the form x(t) = eλt. One then gets:

x′′(t) + a1x′(t) + a0x(t) = 0 ⇒ λ2eλt + a1λeλt + a0eλt = 0 (18-21)

Dividing this equation by eλt, which is non-zero for all values of t, yields the charac-
teristic equation.

�

Example 18.3 Solution to the Homogeneous Equation

Given the homogeneous differential equation

x′′(t) + x′(t)− 20x(t) = 0, t ∈ R, (18-22)

which has the characteristic equation

λ2 + λ− 20 = 0. (18-23)
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We wish to determine the general solution Lhom to this homogeneous equation.

The characteristic equation has the roots λ1 = −5 and λ = 4, since−5 · 4 = −20 and−(−5+
4) = 1 are the coefficients of the characteristic equation. Therefore the general solution to the
homogeneous equation is

Lhom =
{

c1e−5t + c2e4t , t ∈ R c1, c2 ∈ R
}

, (18-24)

that has been found using 18.2.

Example 18.4 Solution to the Homogeneous Equation

A homogeneous second-order differential equation with constant coefficients is given by:

x′′(t)− 8x′(t) + 16x(t) = 0, t ∈ R. (18-25)

We wish to determine Lhom, the general solution to the homogeneous equation. The charac-
teristic equation is

λ2 − 8λ + 16 = 0⇔ (λ− 4)2 = 0 (18-26)

Thus we have the double root λ = 4, and the general solutions set is composed of the follow-
ing function for all c1, c2 ∈ R:

x(t) = c1e4t + c2te4t, t ∈ R. (18-27)

The result is determined using Theorem 18.2.

As can be seen from the two preceding examples it is relatively simple to determine
the solution to the homogeneous equation. In addition it is possible to determine the
differential equation from the solution, that is "go backwards". This is illustrated in the
following example.

Example 18.5 From Solution to Equation

The solution to a differential equation is known:

x(t) = c1e2t cos(7t) + c2e2t sin(7t), t ∈ R, (18-28)

which with the arbitrary constants c1, c2 constitute the general solution.

Since the solution only includes terms with arbitrary constants, the equation must be homo-
geneous. Furthermore it is seen that the solution structure is similar to the solution structure
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in equation (18-10) in Theorem 18.2. This means that the characteristic equation of the second-
order differential equation has two complex roots: λ = 2± 7i. The characteristic equation
given these roots reads:

(λ− 2 + 7i)(λ− 2− 7i) = (λ− 2)2 − (7i)2 =

λ2 − 4λ + 4 + 49 = λ2 − 4λ + 53 = 0
(18-29)

Directly from coefficients of the characteristic equation we can write the differential equation
as:

x′′(t)− 4x′(t) + 53x(t) = 0, t ∈ R. (18-30)

This can also be seen from Theorem 18.2.

18.2 The Inhomogeneous Equation

In this section we wish to determine a particular solution x0(t) to the inhomogeneous
differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, q : I → R. (18-31)

We wish to find a particular solution, because it is part of the general solution Linhom
together with the general solution Lhom to the corresponding homogeneous equation cf.
Method 18.1.

In this eNote we do not use a specific solution formula. Instead we use different meth-
ods depending on the form of q(t). In general one might guess that a particular solu-
tion x0(t) has a form that somewhat resembles q(t), as will appear from the following
methods. Notice that these methods cover some frequently occurring forms of q(t), but
certainly not all.

Furthermore the concept of superposition will be treated. Superposition is a basic quality
of linear equations and linear differential equations. The point is to split the equation
into more equations in which the left hand sides stay the same while the sum of the
right hand sides is equal to the right hand side of the original equation. If the original
equation has the right hand side q(t) = sin(2t) + 2t2, it may be a good idea to split the
equation into two, where the right hand sides become q1(t) = sin(2t) and q2(t) = 2t2

respectively. It is easier to determine particular solutions to the two equations. A par-
ticular solution to the original equation will then be the sum of the two particular solu-
tions.

Finally we will introduce the complex guess method. The complex guess method can be



eNote 18 18.2 THE INHOMOGENEOUS EQUATION 8

used if the right hand side q(t) of the equation is the real part of a simple complex ex-
pression, e.g. q(t) = et sin(3t) that is the real part of−ie(1+3i)t. Solving an equation with
a simple right hand side is easier, and therefore the corresponding complex equation is
solved instead. The solutions to the real equation and to the corresponding complex
equation are closely related.

18.2.1 General Solution Methods

Method 18.6 Polynomial

Given the inhomogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, (18-32)

where q is an n-th degree polynomial. If a0 6= 0 a polynomial of degree n that is a
particular solution to the equation exists. In general a polynomial of degree n + 2 at
the most, that is a particular solution to the equation, exists. A particular solutions
of the form mentioned is found by insertion of polynomials of a suitable degree
with unknown coefficients in the left-hand side of the equation and tune this to the
right-hand side q , cf the identity theorem for polynomials, eNote 2, Theorem 2.15.

Example 18.7 Polynomial

Given the inhomogeneous second-order differential equation with constant coefficients

x′′(t)− 3x′(t) + x(t) = 2t2 − 16t + 25, t ∈ R. (18-33)

We wish to determine a particular solution x0(t) to the inhomogeneous equation. Since the
right hand side is a second degree polynomial we insert an unknown polynomial of second
degree in the left-hand side of the equation and equate this with the right-hand side:

x0(t) = b2t2 + b1t + b0, t ∈ R. (18-34)

The coefficients are determined by substituting the expression into the differential equation
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together with x′0(t) = 2b2t + b1 og x′′0 (t) = 2b2.

2b2 − 3(2b2t + b1) + b2t2 + b1t + b0 = 2t2 − 16t + 25⇔
(b2 − 2)t2 + (−6b2 + b1 + 16)t + (2b2 − 3b1 + b0 − 25) = 0⇔

b2 − 2 = 0 og − 6b2 + b1 + 16 = 0 og 2b2 − 3b1 + b0 − 25 = 0

(18-35)

From the first equation it is evident that b2 = 2, and by substituting this in the second equa-
tion we get b1 = −4. Finally the last equation yields b0 = 9. Therefore a particular solution
to Equation (18-33) is given by

x0(t) = 2t2 − 4t + 9, t ∈ R. (18-36)

Exercise 18.8 Polynomium

Given the following differential equation where the right-hand side is a first degree polyno-
mial:

x′′(t) = t + 1 , t ∈ R. (18-37)

Show that you have to go to the third degree in order to find a polynomial that is a particular
solution to the equation.

Method 18.9 Trigonometric

A particular solution x0(t) to the inhomogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, (18-38)

where q(t) = a cos(ωt) + b sin(ωt), is of the same form:

x0(t) = A sin(ωt) + B cos(ωt), t ∈ I, (18-39)

where A and B are determined by substitution of the expression for x0(t) as a solu-
tion into the inhomogeneous equation.

It is also possible to determine a particular solution to a differential equation
like the one in Method 18.9 using the complex guess method, cf. e.g. section
18.2.3.
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Example 18.10 Trigonometric

Given the differential equation

x′′(t) + x′(t)− x(t) = −20 sin(3t) + 6 cos(3t), t ∈ R. (18-40)

We wish to determine a particular solution x0(t). By the use of Method 18.9 a particular
solution is

x0(t) = A sin(ωt) + B cos(ωt) = A sin(3t) + B cos(3t). (18-41)

In addition we have
x′0(t) = 3A cos(3t)− 3B sin(3t)

x′′0 (t) = −9A sin(3t)− 9B cos(3t)
(18-42)

This is substituted into the equation

(−9A sin(3t)− 9B cos(3t)) + (3A cos(3t)− 3B sin(3t))− (A sin(3t) + B cos(3t))

= −20 sin(3t) + 6 cos(3t)⇔
(−9A− 3B− A + 20) sin(3t) + (−9B + 3A− B− 6) cos(3t) = 0⇔

−9A− 3B− A + 20 = 0 og − 9B + 3A− B− 6 = 0

(18-43)

This is two equations in two unknowns. Substituting A = − 3
10 B + 2 from the first equation

in the second yields

−9B + 3
(
− 3

10
B + 2

)
− B− 6 = 0⇔ −10B− 9

10
B = 0⇔ B = 0 (18-44)

From this we get that A = 2, and a particular solution to the differential equation is then

x0(t) = 2 sin(3t), t ∈ R. (18-45)

Note that the number ω = 3 is the same in the arguments of both cosine
and sine in Example 18.10, and this is the only case that Method 18.9 facili-
tates. If two different numbers are present Method 18.9 does not apply, e.g.
q(t) = 3 sin(t) + cos(10t). But either superposition or the complex guess method
can be applied, and they will be described in section 18.2.2 and section 18.2.3,
respectively.
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Method 18.11 Exponential Function

A particular solution x0(t) to the inhomogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, (18-46)

where q(t) = βeαt og α, β ∈ R, is also an exponential function:

x0(t) = γeαt, t ∈ I, (18-47)

where γ is determined by substituting the expression for x0(t) as a solution into the
inhomogeneous equation. We emphasize that α must not be a root of the character-
istic equation for the differential equation.

As commented by the end of Method 18.11 the exponent α must not be a root of
the characteristic equation. If this is the case the guess will be a solution to the
corresponding homogeneous equation c.f. Theorem 18.2. This is a “problem”
for all orders of differential equations.

Example 18.12 Exponential Function

Given the differential equation

x′′(t) + 11x′(t) + 5x(t) = −20e−t, t ∈ R. (18-48)

We wish to determine a particular solution x0(t). According to Method 18.11 a particular
solution is given by x0(t) = γeαt = γe−t. We do not yet know whether α = −1 is a root in the
characteristic equation, but if it is possible to find γ, it is not a root. We have x′0(t) = −γe−t

and x′′0 (t) = γe−t, and this is substituted into the differential equation:

γe−t + 11(−γe−t) + 5γe−t = −20e−t ⇔ − 5γ = −20⇔ γ = 4 (18-49)

Thus we have succeeded in finding γ, and therefore we have a particular solution to the
differential equation:

x0(t) = 4e−t, t ∈ R. (18-50)
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Method 18.13 Exponential Function Belonging to Lhom

A particular solution x0(t) to the inhomogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, (18-51)

where q(t) = βeλt, β ∈ R and λ is a root in the characteristic equation of the differ-
ential equation, has the following form:

x0(t) = γteλt, t ∈ I, (18-52)

where γ is determined by substitution of the expression for x0(t) as a solution into
the inhomogeneous equation.

Example 18.14 Exponential Function Belonging to Lhom

Given the differential equation

x′′(t)− 7x′(t) + 10x(t) = −3e2t, t ∈ R. (18-53)

We wish to determine a particular solution. First we try to use Method 18.11, and guess a
solution of the form x0(t) = γeαt = γe2t. One then has x′0(t) = 2γe2t and x′′0 (t) = 4γe2t,
which by substitution into the equation gives

4γe2t − 7 · 2γe2t + 10γe2t = −3e2t ⇔ 0 = −3 (18-54)

It is seen that γ does not appear in the last equation, and that the equation otherwise is false.
Therefore α = λ must be a root in the characteristic equation. The characteristic equation
looks like this:

λ2 − 7λ + 10 = 0 (18-55)

This second degree equation has the roots 2 and 5, since 2 · 5 = 10 and −(2 + 5) = −7. It is
true that α = 2 is a root.

Consequently we use Method 18.13, and we guess a solution of the form x0(t) = γteλt =

γte2t. We then have

x′0(t) = γe2t + 2γte2t

x′′0 (t) = 2γe2t + 2γe2t + 4γte2t = 4γe2t + 4γte2t (18-56)

This is substituted into the equation in order to determine γ.

4γe2t + 4γte2t − 7(γe2t + 2γte2t) + 10γte2t = −3e2t ⇔
(4γ− 14γ + 10γ)t + (4γ− 7γ + 3) = 0 ⇔

γ = 1

(18-57)
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We have now succeeded in finding γ, and therefore a particular solution to the equation is

x0(t) = te2t, t ∈ R. (18-58)

18.2.2 Superposition

Within all types of linear equations the concept of superposition exists. We present the
concept here for second-order linear differential equations with constant coefficients.
Superposition is here used in order to determine a particular solution to the inhomo-
geneous equation, when the right hand side (q(t)) is a combination (addition) of more
types of functions, e.g. a sine function added to a polynomial.

Theorem 18.15 Superposition

Let q1, q2, . . . , qn be continuous functions on an interval I. If x0i(t) is a particular
solution to the inhomogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = qi(t) (18-59)

for every i = 1, . . . , n, then

x0(t) = x01(t) + x02(t) + . . . + x0n(t) (18-60)

is a particular solution to

x′′(t) + a1x′(t) + a0x(t) = q(t) = q1(t) + q2(t) + . . . + qn(t), (18-61)

Proof

Superposition is a consequence of the differential equation being linear. We will here give a
general proof for all types of linear differential equations.

The left hand side of a differential equation is called f (x(t)). We now posit n differential
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equations:

f (x01(t)) = q1(t), f (x02(t)) = q2(t), . . . , f (x0n(t)) = qn(t) (18-62)

where x01 , x02 , . . . , x0n are particular solutions to the respective inhomogeneous differential
equations. Define x0 = x01 + x02 + . . . + x0n and substitute this into the left hand side:

f (x0(t)) = f (x01(t) + x02(t) + . . . + x0n(t))

= f (x01(t)) + f (x02(t)) + . . . + f (x0n(t))

= q1(t) + q2(t) + . . . + qn(t)

(18-63)

On the right hand side we get the sum of the functions q1, q2, . . . , qn, which sum we call q.
The Theorem is thus proven.

�

Example 18.16 Superposition

Given the inhomogeneous differential equation

x′′(t)− x′(t)− 3x(t) = 9e4t + 3t− 14, t ∈ R. (18-64)

We wish to determine a particular solution x0(t). It is seen that the right hand side is a
combination of an exponential function (q1(t) = 9e4t) and a polynomial (q2(t) = 3t − 14).
Therefore we use superposition 18.15 and the equation is split into two parts.

x′′(t)− x′(t)− 3x(t) = 9e4t = q1(t) (18-65)

x′′(t)− x′(t)− 3x(t) = 3t− 14 = q2(t) (18-66)

First we treat (18-65), for which we use Method 18.11. A particular solution then has the form
x01(t) = γeαt = γe4t. We have x′01

(t) = 4γe4t and x′′01
(t) = 16γe4t. This is inserted into the

equation.
16γe4t − 4γe4t − 3γe4t = 9e4t ⇔ γ = 1 (18-67)

Therefore x01(t) = e4t.

Now we treat Equation (18-66), where a particular solution is a polynomial of at the most
first degree, cf. Method 18.6, thus x02(t) = b1t + b0. Hence x′02

(t) = b1 and x′′02
(t) = 0. This is

substituted into the differential equation.

0− b1 − 3(b1t + b0) = 3t− 14⇔ (−3b1 − 3)t + (−b1 − 3b0 + 14) = 0 (18-68)

Thus we have two equations in two unknowns, and we find that b1 = −1, and therefore that
b0 = 5. Thus a particular solution is x02(t) = −t + 5. The general solution to (18-64) is then
found as the sum of the already found particular solutions to the two split equations:

x0(t) = x01(t) + x02(t) = e4t − t + 5, t ∈ R. (18-69)
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18.2.3 The Complex Guess Method

The complex guess method is used when it is easy to rewrite the right hand side of the
differential equation as a complex expression, such that the given real right hand side is
the real part of the complex.

If e.g. the original right hand side is 2e2t cos(3t) , adding i(−2e2t sin(3t)) , we get

2e2t(cos(3t)− i sin(3t)) = 2e(2−3i)t . (18-70)

Here it is evident that Re(2e(2−3i)t) = 2e2t cos(3t) . One then finds a complex particular
solution with complex right hand side. The wanted real particular solution to the origi-
nal equation is then the real part of the found complex solution.

Note that this method can be used because the equation is linear. It is exactly the lin-
earity that secures that the real part of the complex solution found is the wanted real
solution. This is shown by interpreting the left hand side of the equation as linear map
f (z(t)) in the set of complex functions of one real variable and using the following gen-
eral theorem:

Theorem 18.17

Given a linear map f : (C∞(R), C)→ (C∞(R), C) and the equation

f (z(t))) = s(t) . (18-71)

If we state z(t) and s(t) in rectangular form as z(t) = x(t) + i · y(t) and s(t) =
q(t) + i · r(t) , then (18-71) is true and if and only if

f (x(t)) = q(t) and f (y(t)) = r(t) . (18-72)
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Proof

Given the function z(t) and letting the linear map f and the functions z(t) and s(t) be given
as in Theorem 18.17. As a consequence of the qualities of a linear map, cf. Definition ??, the
following applies:

f (z(t)) = s(t)⇔
f (x(t) + i · y(t)) = q(t) + i · r(t)⇔

f (x(t)) + i · f (y(t)) = q(t) + i · r(t)⇔
f (x(t)) = q(t) and f (y(t)) = r(t) .

(18-73)

Thus the theorem is proven.

�

Method 18.18 The Complex Guess Method

A particular solution x0(t) to the real inhomogeneous differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ R, (18-74)

where a0 og a1 are real coefficients and

q(t) = Re
(
(a + bi)e(α+ωi)t

)
= aeαt cos(ωt)− beαt sin(ωt), (18-75)

is initially determined by the corresponding complex particular solution to the fol-
lowing complex equation

z′′(t) + a1z′(t) + a0z(t) = (a + bi)e(α+ωi)t, t ∈ R, (18-76)

The complex particular solution has the form z0(t) = (c + di)e(α+ωi)t, where c and d
are determined by substitution of z0(t) into Equation (18-76).

Then a particular solution to equation (18-74) is given by

x0(t) = Re(z0(t)) . (18-77)
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A decisive reason for using the complex guess method is that it is so easy to
determine the derivative of the exponential function, even when it is complex.

Example 18.19 The Complex Guess Method

Given a second-order inhomogeneous differential equation:

x′′(t)− 2x′(t)− 2x(t) = 19e4t cos(t)− 35e4t sin(t), t ∈ R. (18-78)

We wish to determine a particular solution. It is evident that we can use the complex guess
method in Method 18.18. Initially the following is true for the right hand side:

q(t) = 19e4t cos(t)− 35e4t sin(t) = Re
(
(19 + 35i)e(4+i)t

)
. (18-79)

We shall now instead of the original problem find a complex particular solution to the differ-
ential equation

z′′(t)− 2z′(t)− 2z(t) = (19 + 35i)e(4+i)t, t ∈ R. (18-80)

by guessing that z0(t) = (c + di)e(4+i)t is a solution. We also have

z′0(t) = (c + di)(4 + i)e(4+i)t = (4c− d + (c + 4d)i) e(4+i)t and

z′′0 (t) = (4c− d + (c + 4d)i)(4 + i)e(4+i)t = (15c− 8d + (8c + 15d)i)e(4+i)t
(18-81)

These expressions are substituted into the complex equation in order to determine c and d:

(15c− 8d + (8c + 15d)i)e(4+i)t − 2(4c− d + (c + 4d)i)e(4+i)t − 2(c + di)e(4+i)t

= (19 + 35i)e(4+i)t ⇔
15c− 8d + (8c + 15d)i− 2(4c− d + (c + 4d)i)− 2(c + di) = 19 + 35i ⇔

5c− 6d + (6c + 5d)i = 19 + 35i⇔
5c− 6d = 19 og 6c + 5d = 35

(18-82)

These are two equations in two unknowns. The augmented matrix of the system of equations
is written: [

5 −6 19
6 5 35

]
→

[
1 − 6

5
19
5

0 61
5

61
5

]
→

[
1 0 5
0 1 1

]
. (18-83)

thus we have that c = 5 and d = 1, which yields z0(t) = (5 + i)e(4+i)t. Therefore a particular
solution to the equation (18-78) is

x0(t) = Re(z0(t)) = Re
(
(5 + i)e(4+i)t

)
= 5e4t cos(t)− e4t sin(t), t ∈ R. (18-84)
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18.3 Existence and Uniqueness

Here we formulate a theorem about existence and uniqueness for differential equations
of the second order with constant coefficients. We need two initial value conditions: The
value of the function and its first derivative at the chosen initial point.

Theorem 18.20 Existence and Uniqueness

For every 3-tuple (t0, x0, v0) (double initial value condition), there exists exactly one
solution x(t) to the differential equation

x′′(t) + a1x′(t) + a0x(t) = q(t), t ∈ I, q : I → R, (18-85)

such that
x(t0) = x0 and x′(t0) = v0, (18-86)

where t0 ∈ I, x0 ∈ R and v0 ∈ R.

Example 18.21 Exsistence and Uniqueness

Given the differential equation

x′′(t)− 5x′(t)− 36x(t) = 0, t ∈ R. (18-87)

It is seen that the equation is homogeneous. It has the characteristic equation

λ2 − 5λ− 36 = 0. (18-88)

We wish to determine a function x(t) that is a solution to the differential equation and has
the initial value condition (t0, x0, v0) = (0, 5, 6). The characteristic equation has the roots
λ1 = −4 and λ2 = 9, since −4 · 9 = −36 and −(9 + (−4)) = 5 are the coefficients of
the equation. Therefore the general solution for the homogeneous equation (using Theorem
18.2) is spanned by the following functions for all c1, c2 ∈ R:

x(t) = c1e−4t + c2e9t, t ∈ R. (18-89)

One then has
x′(t) = −4c1e−4t + 9c2e9t (18-90)

if the initial value condition (x(0) = 5 and x′(0) = 6) is substituted into the two equations
one can solve for (c1, c2).

5 = c1 + c2

6 = −4c1 + 9c2
(18-91)
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since e0 = 1. If c2 = 5− c1 is substituted into the second equation one gets

6 = −4c1 + 9(5− c1) = −13c1 + 45 ⇔ c1 =
6− 45
−13

= 3 (18-92)

Therefore c2 = 5− 3 = 2 and the conditional solution is

x(t) = 3e−4t + 2e9t, t ∈ R (18-93)

Note that one can determine a unique and conditional solution to a homogeneous
differential equation, as in this case. The right hand side needs not be different from
zero. The general solution for the equation is Linhom = Lhom, since x0(t) = 0.

Below is an example going through the whole solution procedure for an inhomogeneous
equation with a double initial value condition. After that an example is presented where
the purpose is to find the differential equation given the general solution. It is analogous
to example 18.5, but now we have a right hand side different from zero.

Example 18.22 Accumulated Example

Given the differential equation

x′′(t) + 6x′(t) + 5x(t) = 20t2 + 48t + 13, t ∈ R. (18-94)

We determine the general solution Linhom. Then the conditional solution x(t) that satisfies the
initial value condition (t0, x0, v0) = (0, 5,−8) , will be determined.

First we solve the corresponding homogeneous equation, and the characteristic equation
looks like this:

λ2 + 6λ + 5 = 0 (18-95)

This has the roots λ1 = −5 and λ2 = −1, since (λ + 5)(λ + 1) = λ2 + 6λ + 5. Because these
roots are real and different, cf. Theorem 18.2, the general homogeneous solution set is given
by

Lhom =
{

c1e−5t + c2e−t , t ∈ R c1, c2 ∈ R
}

. (18-96)

Now we determine a particular solution to the inhomogeneous equation. Since the right hand
side is a second degree polynomial we guess that x0(t) = b2t2 + b1t + b0, using Method 18.6.
We then have that x′0(t) = 2b2t + b1 and x′′0 (t) = 2b2. This is substituted into the differential
equation.

2b2 + 6(2b2t + b1) + 5(b2t2 + b1t + b0) = 20t2 + 48t + 13⇔
(5b2 − 20)t2 + (12b2 + 5b1 − 48)t + (2b2 + 6b1 + 5b0 − 13) = 0⇔

5b2 − 20 = 0 og 12b2 + 5b1 − 48 = 0 og 2b2 + 6b1 + 5b0 − 13 = 0.

(18-97)
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The first equation easily yields b2 = 4. If this is substituted into the second equation we get
b1 = 0. Finally in the third equation we get b0 = 1. A particular solution to the inhomoge-
neous equation is therefore

x0(t) = 4t2 + 1, t ∈ R. (18-98)

Following the structural theorem, e.g. Method 18.1, the general solution to the inhomoge-
neous equation is given by

Linhom = x0(t) + Lhom =
{

4t2 + 1 + c1e−5t + c2e−t , t ∈ R c1, c2 ∈ R
}

(18-99)

We now determine the solution that satisfies the given initial value conditions. An arbitrary
solution has the form

x(t) = 4t2 + 1 + c1e−5t + c2e−t, t ∈ R. (18-100)

We now determine the derivative

x′(t) = 8t− 5c1e−5t − c2e−t, t ∈ R. (18-101)

If x(0) = 5 and x′(0) = −8 are substituted we get two equations

5 = c1 + c2 + 1
−8 = −5c1 − c2

(18-102)

Substituting c1 = 4− c2 from the first equation into the second we get

−8 = −5(4− c2)− c2 ⇔ −8 + 20 = 4c2 ⇔ c2 = 3. (18-103)

This yields c1 = 1 and therefore the conditional solution is

x(t) = e−5t + 3e−t + 4t2 + 1, t ∈ R. (18-104)

Example 18.23 From the Solution to the Equation

Given the general solution to a linear second-order differential equation with constant coef-
ficients:

Linhom =
{

c1e−2t + c2e2t − 1
2 sin(2t) , t ∈ R c1, c2 ∈ R

}
(18-105)

It is now the aim to find the differential equation, which in general looks like this:

x′′(t) + a1x′(t) + a0x(t) = q(t) (18-106)

Thus we have to determine a1, a0 and q(t).
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First we split the solution into a particular solution and the general homogeneous solution
set:

x0(t) = − 1
2 sin(2t), t ∈ R and Lhom =

{
c1e−2t + c2e2t t ∈ R c1, c2 ∈ R

}
(18-107)

Now we consider the general homogeneous solution. The looks of this complies with the first
case of in Theorem 18.2. The characteristic equation has two real roots and they are λ1 = −2
and λ2 = 2. Therefore the characteristic equation is

(λ + 2)(λ− 2) = λ2 − 4 = 0 (18-108)

This determines the coefficients on the left hand side of the differential equation: a1 = 0 and
a0 = −4. The differential equation so far looks like this:

x′′(t)− 4x(t) = q(t), t ∈ R. (18-109)

Since x0(t) is a particular solution to the inhomogeneous equation the right hand side q(t)
can be determined by substituting x0(t). We have that x′′0 (t) = 2 sin(2t).

x′′0 (t)− 4x0(t) = q(t) ⇔
2 sin(2t)− 4(− 1

2 sin(2t)) = q(t) ⇔
4 sin(2t) = q(t)

(18-110)

Now all unknowns in the differential equation are determined:

x′′(t)− 4x(t) = 4 sin(2t), t ∈ R. (18-111)

In these eNotes we do not consider systems of second-order homogeneous
linear differential equations with constant coefficients. We should mention,
however, that with the presented theory and a bit of cleverness we can solve
such problems. If we have a system of second-order homogeneous differential
equations then we can consider each equation individually. By use of Section
17.4 such an equation be rewritten as two equations of first order. If this is
done with all the equations in the system, we end up with double the number
of equations, but those now of first-order equations. We can solve this new
system with the theory presented in eNote 16. Systems of second-order ho-
mogeneous linear differential equations are seen in many places in mechanical
physics, chemistry, electro-magnetism etc.
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18.4 Summary

In this note linear second-order differential equations with constant coefficients are writ-
ten as:

x′′(t) + a1x′(t) + a0x(t) = q(t) (18-112)

• This equation is solved by first determining the general solution to the correspond-
ing homogeneous equation and then adding this to a particular solution to the
inhomogeneous equation, see Method 18.1.

• The general solution to the corresponding homogeneous differential equation is
determined by finding the roots of the characteristic equation:

λ2 + a1λ + a0 = 0. (18-113)

There are in principle three cases, see Theorem 18.2.

• A particular solution is determined by “guessing” a solution that has the same
appearance as the right hand side q(t). If e.g. q(t) is a polynomial then x0(t) is
also a polynomial of at the most same degree. In the note many examples are
given, see Section 18.2.

• In particular we have the complex guess method for the determination of the partic-
ular solution x0(t). The complex guess method can be used when the right hand
side has this appearance:

q(t) = Re
(
(a + bi)e(α+ωi)t

)
= aeαt cos(ωt)− beαt sin(ωt). (18-114)

The solution is then determined by rewriting the differential equation in the cor-
responding exponential form, see Method 18.18.

• Furthermore superposition is introduced. Superposition is a general principle that
applies to all types of linear equations. The idea is that two particular solutions can
be added. When they are substituted into the differential equation they will not
influence each other, and hence the right hand side can also be split into two terms,
each corresponding to one of the two solutions. This can be used to determine a
particular solution, when the right hand side is the sum of e.g. a sine function and
a polynomial. See e.g. Example 18.16.

• Furthermore an existence and uniqueness theorem is formulated, see Theorem 18.20.
According to this theorem a unique conditional solution that must satisfy two
particular initial value conditions to a second-order differential equation can be de-
termined.
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