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eNote 16

First Order Linear Differential Equations

In this eNote we first give a short introduction to differential equations in general and then the
main subject is a special type of differential equation the so-called first order differential
equations. The eNote is based on knowledge of special functions, differential and integral
calculus and linear maps.

Version 19.10.18 by Karsten Schmidt/Jesper Kampmann Larsen. Updated 2.11.21 David
Brander.

16.1 What Is a Differential Equation?

A differential equation is an equation, in which one or more unknown functions appear
together with one or more of their derivatives. In this eNote we only consider differ-
ential equations that contain one unknown function. Differential equations naturally
occur in the modelling of physical, mechanical, economic, chemical and manifold other
problems, and this is why it is an important subject.

One says that a differential equation has the order n if it contains the nth derivative of
the unknown function, but no derivatives of order higher than n . The unknown func-
tion is in this eNote denoted by x or x(t) , if the name of the independent variable t is
important in the context.

An example of a differential equation is

x′′′(t)− 2x′(t) + x(t) = t , t ∈ R. (16-1)
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The equation has order 3, since the highest number of times the unknown function x
is differentiated in the equation is 3. A solution to the equation is a function x0 which,
inserted into the equation, makes it true. If we, for example, want to investigate whether
the function

x0(t) = et + t + 2 , t ∈ R

is a solution to (16-1), we test this by insertion of x0 in place of x in the equation. Since

x′′′0 (t)− 2x′0(t) + x0(t) = (et + t + 2)′′′ − 2(et + t + 2)′ + ((et + t + 2))

= et − 2(et + 1) + et + t + 2
= t,

x0 is a solution.

This eNote is about an important type of first order differential equation, the so-called
linear differential equations. In order to be able to investigate these precisely we first
express them in a standard way.

16.2 Introduction to First Order Linear Differential
Equations

Definition 16.1

By a first order linear differential equation we understand a differential equation that
can be brought into the standard form

x′(t) + p(t)x(t) = q(t) , t ∈ I (16-2)

where I is an open interval in R , and p and q are (known) continuous functions
defined on I .

The equation is called homogeneous if q(t) = 0 for all t . Otherwise it is called inho-
mogeneous.
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Example 16.2 Standard Form

The first order differential equation

x′(t) + 2x(t) = 30 + 8t , t ∈ R . (16-3)

is immediately seen to be in standard form (16-2) with p(t) = 2 and q(t) = 30+ 8t , t ∈ R .
Therefore it is linear.

Example 16.3 Standard form

Let I be an open interval in R . Consider the first order linear differential equation

t · x′(t) + 2x(t)− 8t2 = −10 , t ∈ R . (16-4)

In order to bring this into standard form we first have to add 8t2 to both sides of the equation,
since on the left-hand side only terms containing the unknown function x(t) must appear.
Then we divide both sides by t, since the coefficient of x′(t) must be 1 in the standard form.
To avoid division by 0, we must assume that t is either greater or less than zero: let us choose
the first:

x′(t) +
2
t

x(t) = 8t− 10
t

, t > 0 . (16-5)

Now the differential equation is in the standard form with p(t) =
2
t

and

q(t) = 8t− 10
t

, t > 0 .

Exercise 16.4 Standard Form

Explain why the first order differential equation

x′(t) +
1
2

t2 = 0 , t ∈ R

is not homogeneous.
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Exercise 16.5 More Solutions

Given the differential equation

x′(t) + 2x(t) = 30 + 8t , t ∈ R.

Show that, for any of c = 1, c = 2 or c = 3 , the function

x0(t) = 13 + 4t + ce−2t , t ∈ R

is a solution.

From Exercise 16.5 it appears that a differential equation can have more than one solu-
tion. We will in what follows investigate in more detail the question about the number
of solutions. In order to understand precisely what is meant by a first order differential
equation being linear and what this means for its solution set, we will need the follow-
ing lemma.

Lemma 16.6

Let p be a continuous function defined on an open interval I in R . Then the map
f : C1(I)→ C0(I) given by

f (x(t)) = x′(t) + p(t)x(t) (16-6)

is linear.

Proof

We will show that f satisfies the two linearity requirements L1 and L2 . Let x1, x2 ∈ C1(I)
(i.e. the two functions are arbitrary differentiable functions with continuous derivatives on
I ), and let k ∈ R . That f satisfies L1 appears from

f (x1(t) + x2(t)) = (x1(t) + x2(t))′ + p(t)(x1(t) + x2(t))

= x′1(t) + x′2(t) + p(t)(x1(t) + p(t)x2(t)

= (x′1(t) + p(t)x1(t)) + (x′2(t) + p(t)x2(t))

= f (x1(t)) + f (x2(t)) .
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That f satisfies L2 appears from

f (kx1(t)) = (kx′1(t)) + p(t)(kx1(t)) = k(x′1(t) + p(t)x1(t))

= k f (x1(t)) .

By this the proof is completed.

�

From Lemma 16.6 we can deduce important properties for the solution set for first order
linear differential equations. First we introduce convenient notations for the solution
sets that we will treat.

Linhom denotes all solutions for a given inhomogeneous differential equation.
Linhom is briefly known as the solution set or the general solution.

Lhom denotes the solution set for a homogeneous differential equation corre-
sponding to an inhomogeneous equation (where the right-hand side q(t) is
replaced by 0 ) .

Theorem 16.7 Three Properties

For a first order linear differential equation x′(t) + p(t)x(t) = q(t) , t ∈ I :

1. If the equation is homogeneous (i.e. q(t) is the 0-function), then the solution
set is a vector subspace of C1(I) .

2. Structure Theorem: If the equation is inhomogeneous the general solution
Linhom can be written in the form

Linhom = x0(t) + Lhom (16-7)

where x0(t) is a particular solution to the inhomogeneous differential equation,
and Lhom is the solutions set to the corresponding homogeneous differential
equation.

3. Superposition principle: If x1(t) is a solution when the right-hand side of the
differential equation is replaced by the function q1(t) , and x2(t) is a solution
when the right-hand side is replaced by the function q2(t) , then x1(t) + x2(t)
is a solution when the right-hand side is replaced by the function q1(t)+ q2(t) .
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Proof

We consider the map between vector spaces, f : C1(I)→ C0(I) given by

f (x(t)) = x′(t) + p(t)x(t) . (16-8)

This is, according to Lemma 16.6, linear. Therefore we have:

1. Lhom is equal to ker( f ) . Since the kernel for every linear map is a subspace of the
domain, Lhom is a subspace of C1(I) .

2. Since the equation f (x(t)) = x′(t) + p(t)x(t) = q(t) is linear, the structure theorem
follows directly from the general structure theorem for linear equations (see eNote 12,
Theorem 12.14).

3. The superposition principle follows from the fact that f satisfies the linearity require-
ment L1 . Assume that f (x1(t)) = q1(t) and f (x2(t)) = q2(t) . Then

f (x1(t) + x2(t)) = f (x1(t)) + f (x2(t)) = q1(t) + q2(t) .

By this the proof is completed.

�

When we call a first order differential equation of the form (16-2) linear, it is – as shown
above – closely related to the fact that its left-hand side represents a linear map, and that
its solution set therefore has the unique properties of Theorem 16.7. In the following
example we juggle with the properties in order to decide whether a given differential
equation is not linear.

Example 16.8 First Order Differential Equation That Is Nonlinear

We consider a first order differential equation

x′(t)− (x(t))2 = q(t) , t ∈ R . (16-9)

where we in the usual way have isolated the terms that contain the unknown function on the
left-hand side. The left-hand side represents the map f : C1(R)→ C0(R) given by

f (x(t)) = x′(t)− (x(t))2 . (16-10)
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Here we will show that one, in different ways, can demonstrate that the differential equation
is not linear.

1. We can show directly that f does not satisfy the linearity conditions. To show this we
can test L2 , e.g. with k = 2 . We compute the two sides in L2 :

f (2x(t)) = (2x(t))′ − (2x(t))2 = 2x′(t)− 4(x(t))2

2 f (x(t)) = 2(x′(t)− (x(t))2) = 2x′(t)− 2(x(t))2 .

By subtraction of the two equation we get:

f (2x(t))− 2 f (x(t)) = −2(x(t))2

where the right-hand side is only the 0-function when x(t) is the 0-function. Since L2

applies for all x(t) ∈ C1(R) , L2 is not satisfied. Therefore the equation is nonlinear.

2. The solution set to the corresponding homogeneous equation is not a subspace. E.g.
it does not satisfy the stability requirement with repsect to multiplication by a scalar
which we can show as follows:

The function x0(t) = −
1
t

is a solution to the homogeneous eqution because

x′0(t)− (x0(t))2 =
1
t2 −

1
t2 = 0 .

But 2 · x0(t) = −
2
t

is not, because

(2 · x0(t))′ − (2 · x0(t))2 =
2
t2 −

4
t2 = − 2

t2 6= 0 .

Therefore the differential equation is not linear.

3. The solution set does not satisfy the superposition principle. E.g. we see that

f
(
−1

t

)
= 0 and f

(
1
t

)
= − 2

t2 , while

f
(
−1

t
+

1
t

)
= 0 6= 0− 2

t2 .

Therefore the differential equation is not linear.

It follows from the structure theorem that homogeneous equations play a special role
for linear differential equations. Therefore we treat them separately in the next section.
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16.3 Homogeneous First Order Linear Differential
Equations

We now establish a solution formula for homogeneous first order linear equations.

Theorem 16.9 Solution of the Homogeneous Equation

Let p(t) be a continuous function defined on an open real interval I , and let P(t) be
an arbitrary antiderivative for p(t) , i.e., a function satisfying P′(t) = p(t).

The general solution for the homogeneous first order linear differential equation

x′(t) + p(t)x(t) = 0 , t ∈ I . (16-11)

is then given by
x(t) = c e−P(t) , t ∈ I (16-12)

where c is an arbitrary real number.

Proof

The theorem follows from the fact that the derivative of a function g(t) is zero on an interval
if and only if that function is constant. We apply this to the function g(t) = x(t)eP(t). Using
the chain rule and the product rule for differentiation we have:(

x(t)eP(t))
)′

= eP(t)x′(t) + p(t)eP(t)x(t)

= eP(t) (x′(t) + p(t)x(t)
)

.

Since eP(t) 6= 0, the above expression is zero if and only if the equation (16-11) holds. That is,
the differential equation (16-11) is equivalent to the equation:(

x(t)eP(t))
)′

= 0.

As mentioned, this is equivalent to the statement:

x(t)eP(t) = c, (16-13)

where c is some real constant, i.e. that x(t) = ce−P(t). This shows that not only is ce−P(t) a
solution, for any constant c, but that any solution to (16-11) must be of this form, since it must
satisfy Equation (16-13) for some c.

�
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We already know that the solution set is a subspace of C1(I) . From the formula
(16-12) we now know that the subspace is 1-dimensional, and that the function
e−P(t) is a basis for the solution set.

Remark 16.10

Theorem 16.9 is also valid if p is a continuous complex-valued function, with the
slight modification that the arbitrary constant c is now a complex constant. The
proof is exactly the same, because the product rule is the same for complex-valued
functions of t, and, writing P(t) = u(t) + iv(t), one finds that the derivative of eP(t)

is still P′(t)eP(t). Finally, by separating the function into real and imaginary parts,
one again finds that the derivative of a complex-valued function is zero if and only
if the function is equal to a complex constant.

Exercise 16.11

In Theorem 16.9 an arbitrary antiderivative P(t) for p(t) is used. Explain why it is immate-
rial to the solution set which antiderivative you use when you apply the theorem.

Example 16.12 Solution of a Homogeneous Equation

A homogeneous first order linear differential equation is given by

x′(t) + cos(t)x(t) = 0, t ∈ R . (16-14)

We see that that the coefficient function p(t) = cos(t) . An antiderivative for p(t) is
P(t) = sin(t) . Then the general solution can be written as

x(t) = ce−P(t) = ce− sin(t), t ∈ R (16-15)

where c is an arbitrary real number.
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16.4 Inhomogeneous Equations Solved by the Guess
Method

Now that we know how to find the general solution for homogeneous first order linear
differential equations, it is about time to look at the inhomogeneous ones. If you already
know or can guess a particular solution to the inhomogeneous equation, it is obvious
to use the structure theorem, see Theorem 16.7. This is demonstrated in the following
examples.

Example 16.13 Solution Using a Guess and the Structure Theorem

An inhomogeneous first order linear differential equation is given by

x′(t) + tx(t) = t, t ∈ R . (16-16)

It is easily seen that x0(t) = 1 is a particular solution. Then we solve the corresponding
homogeneous differential equation

x′(t) + tx(t) = 0, t ∈ R . (16-17)

Using symbols from Theorem 16.9 we have p(t) = t that has the antiderivative

P(t) =
1
2

t2 .

The general solution therefore consists of the following functions where c is an arbitrary real
number:

x(t) = ce−
1
2 t2

, t ∈ R . (16-18)

In short:
Lhom =

{
ce−

1
2 t2

, t ∈ R c ∈ R

}
. (16-19)

Now we can establish the general solution to the inhomogeneous differential equation using
the structure theorem as:

Linhom = x0(t) + Lhom =
{

1 + ce−
1
2 t2

, t ∈ R c ∈ R

}
.
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Example 16.14 Solution Using a Guess and the Structure Theorem

An inhomogeneous first order linear differential equation is given by

x′(t) + 2x(t) = 30 + 8t, t ∈ R . (16-20)

First let us try to guess a particular solution. Since the right-hand side is first degree poly-
nomial, one can – with the given left-hand side, where you only differentiate and multiply
by 2 – assume that a first degree polynomial could be a solution. Therefore we try to insert
an arbitrary first degree polynomial x0(t) = b + at in the left-hand side of the differential
equation:

x′0(t) + 2x0(t) = (b + at)′ + 2(b + at) = a + 2b + 2at .

We compare the resulting expression with the given right-hand side:

a + 2b + 2at = 30 + 8t

that is satisfied for all t ∈ R eactly when

a + 2b = 30 and 2a = 8 ⇔ a = 4 and b = 13 .

Thus we have found a particular solution

x0(t) = 13 + 4t , t ∈ R .

Then we solve the corresponding homogeneous differential equation

x′(t) + 2x(t) = 0, t ∈ R . (16-21)

Using symbols from Theorem 16.9 we have p(t) = 2 that has the antiderivative P(t) = 2t .
Therefore the general solution consists of the following functions where c is an arbitrary real
number:

x(t) = ce−2t, t ∈ R . (16-22)

In short:
Lhom =

{
ce−2t , t ∈ R c ∈ R

}
. (16-23)

Now its is possible to establish the general solution to the inhomogeneous differential equa-
tion using the structure theorem:

Linhom = x0(t) + Lhom =
{

13 + 4t + ce−2t , t ∈ R c ∈ R
}

.
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Example 16.15 Solution Using a Guess and the Structure Theorem

An inhomogeneous first order linear differential equation is given by

x′(t) + x(t) = 1 + sin(2t), t ≥ 0 . (16-24)

First let us try to guess a particular solution. Since the right-hand side consists of constant
plus a sine function with the angular frequency 2, it is obvious to guess a solution the type

x(t) = k + a cos(2t) + b sin(2t) .

By insertion of this in the differential equation we get:

−2a sin(2t) + 2b cos(2t) + k + a cos(2t) + b sin(2t) = 1 + sin(2t)

⇔ (2b + a) cos(2t) + (b− 2a− 1) sin(2t) + (k− 1) 1 = 0 .

Since the set (cos(2t), sin(2t), 1) is linearly independent, this equation is satisfied exactly
when

2b + a = 0 , b− 2a− 1 = 0 and k = 1 ⇔ a = −2
5

, b =
1
5

and k = 1 .

By this we have found a particular solution

x0(t) = 1− 2
5

cos(2t) +
1
5

sin(2t) , t ∈ R .

Since the corresponding homogeneous differential equation

x′(t) + x(t) = 0, t ≥ 0 (16-25)

evidently has the general solution

x(t) = ce−t, t ≥ 0 , (16-26)

we get the general solution to the given inhomogeneous differential equation by use of the
structure theorem:

Linhom = x0(t) + Lhom =
{

1− 2
5 cos(2t) + 1

5 sin(2t) + ce−t , t ∈ R c ∈ R
}

.

As demonstrated in the three previous examples it makes sense to use the guess method
in the inhomogeneous cases, when you already know a particular solution or easily can
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find one. It only requires that you can find an antiderivative P(t) for the coefficient
function p(t) .

Otherwise if you do not have an immediate particular solution, you must use the gen-
eral solution formula (see below) instead. Here you get rid of the guesswork, but you
must find two antiderivatives, one is P(t) as above, while the other often is somewhat
more difficult (if not impossible) to find, since you must integrate a product of func-
tions. In the following section we establish the general solution formula and discuss the
said problems.

16.5 The General Solution Formula

Now we consider the general first order linear differential equation in the standard form

x′(t) + p(t)x(t) = q(t), t ∈ I, (16-27)

We can determine the general solution using the following general formula.

Theorem 16.16 The General Solution Formula

Let p(t) and q(t) be continuous functions on an open real interval I , and let P(t) be
an arbitrary antiderivative to p(t) . The differential equation

x′(t) + p(t)x(t) = q(t), t ∈ I (16-28)

then has the general solution

x(t) = e−P(t)
∫

eP(t)q(t)dt + ce−P(t), t ∈ I (16-29)

where c is an arbitrary real number.

Proof

The second term in the solution formula (16-29) we identify as Lhom . If we can show that the
first term is a particular solution to the differential equation, then it follows from the struc-
ture theorem that the solution formula is the general solution to the differential equation.
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First we must of course ask ourselves whether the indefinite integral that is part of the solu-
tion formula even exists. It does! See a detailed reasoning for this in the proof of the existence
and uniqueness Theorem 16.24. That the first term

x0(t) = e−P(t)
∫

eP(t)q(t)dt

is a particular solution we show by testing. We insert the term in left-hand side of the differ-
ential equation and see that the result is equal to the right-hand side.

x′0(t) + p(t)x0(t) =
(

e−P(t)
∫

eP(t)q(t)dt
)′

+ p(t) e−P(t)
∫

eP(t)q(t)dt

= −p(t)e−P(t)
∫

eP(t)q(t)dt + e−P(t)eP(t)q(t) + p(t)e−P(t)
∫

eP(t)q(t)dt

= q(t) .

By this the proof is completed.

�

Remark 16.17

Using Remark 16.10, it is straightforward to show that Theorem 16.16 is also valid
if p(t) and q(t) are continuous complex-valued functions, with the modification that
the arbitrary constant c is a complex constant.

If one inserts q(t) = 0 in the general solution formula (16-29), the first term
disappears, and what is left is the second term that is the formula (16-12) for
homogeneous equation. Therefore the formula (16-29) is a "‘general formula"’
that covers both the homogeneous and the inhomogeneous case.

Exercise 16.18

The solution formula (16-29) includes the indefinite integral
∫

eP(t)q(t)dt , that represents an

arbitrary antiderivative of eP(t)q(t) . Explain why it does not matter to the solution set which
antiderivative you choose to use, when you apply the formula.

Now we give a few examples using the general solution formula. Since it contains
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an indefinite integral of a product of functions you will often need integration by parts,
which the second example demonstrates.

Example 16.19 Solution Using the General Formula

Given the differential equation

x′(t) +
2
t

x(t) = 8t− 10
t

, t > 0 . (16-30)

With the symbols in the general solution formula we have p(t) = 2
t and q(t) = 8t− 10

t . An
antiderivative for p(t) is given by:

P(t) = 2 ln t . (16-31)

We then have
e−P(t) = e−2 ln t = eln(t−2) = t−2 =

1
t2 . (16-32)

From this it follows that eP(t) = t2. Now we use the general solution formula:

x(t) = e−P(t)
∫

eP(t)q(t)dt + ce−P(t)

=
1
t2

∫
t2
(

8t− 10
t

)
dt + c

1
t2

=
1
t2

∫
(8t3 − 10t)dt + c

1
t2

=
1
t2

(
2t4 − 5t2 + c

)
x(t) = 2t2 − 5 +

c
t2 , t > 0.

(16-33)

The general solution consists of these functions where c is an arbitrary real number. In short:

Linhom =
{

x(t) = 2t2 − 5 +
c
t2 , t > 0 c ∈ R

}
. (16-34)

Example 16.20 Solution Using the General Formula

We will solve the differential equation

x′(t)− 1
t

x(t) = t2 sin(2t), t > 0 . (16-35)

With the symbols in the general solution formula we have p(t) = − 1
t and q(t) = t2 sin(2t).

An antiderivative for p(t) is given by:

P(t) = − ln t . (16-36)
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We then have
e−P(t) = eln t = t and eP(t) = e− ln t = (eln t)−1 =

1
t

. (16-37)

Now we use the general solution formula::

x(t) = e−P(t)
∫

eP(t)q(t)dt + ce−P(t)

= t
∫ 1

t
t2 sin(2t)dt + ct

= t
∫

t sin(2t)dt + ct .

Now we perform an intermediate computation where we use integration by parts to find the
antiderivative. ∫

t sin(2t)dt = −1
2

t cos(2t)−
∫
−1

2
cos(2t)dt

= −1
2

t cos(2t) +
1
2

∫
cos(2t)dt

= −1
2

t cos(2t) +
1
4

sin(2t) .

And return to the computation

x(t) = t
∫

t sin(2t)dt + ct

= t
(
−1

2
t cos(2t) +

1
4

sin(2t)
)
+ ct

x(t) = −1
2

t2 cos(2t) +
1
4

t sin(2t) + ct t > 0 .

The general solution consists of these functions where c is an arbitrary real number. In short:

Linhom =
{

x(t) = − 1
2 t2 cos(2t) + 1

4 t sin(2t) + ct , t > 0 c ∈ R
}

. (16-38)

Until now we have considered the general solution to the differential equation. Often
one is interested in a particular solution that for a given value of t assumes a desired
functional value, a so-called initial value problem. We treat this in the next section.

16.6 Initial Value Problems

We consider a first order linear differential equation in its standard form

x′(t) + p(t)x(t) = q(t), t ∈ I . (16-39)
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If we need a solution to the equation that for a given value of t assumes a desired
functional value, the following questions arise: 1) Is there even a solution that satisfies
the desired properties and 2) If yes, how many solutions are there? Before we answer
these question generally, we consider a couple of examples.

Example 16.21 An Initial Value Problem

In the Example 16.13 we found the general solution to the differential equation

x′(t) + tx(t) = t, t ∈ R . (16-40)

viz.
x(t) = 1 + ce−

1
2 t2

, t ∈ R

where c is an arbitrary real number.

Now we will find the solution x0(t) that satisfies the initial value condition x0(0) = 3 . This
is done by insertion of the initial value in the general solution, whereby we determine c :

x0(0) = 1 + ce−
1
2 ·02

= 1 + c = 3⇔ c = 2 . (16-41)

Therefore the conditioned solution function to the differential equation is given by

x0(t) = 1 + 2e−
1
2 t2

, t ∈ R . (16-42)

The figure below shows the graphs for the seven solutions that correspond to initial value
conditions x0(0) = b where b ∈ {−3,−2,−1, 0, 1, 2, 3} . The solution we just found is the
uppermost. The others are found in a similar way.
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Example 16.22 An Initial Value Problem

In Example 16.20 we found the general solution to the differential equation

x′(t) +
2
t

x(t) = 8t− 10
t

, t > 0, (16-43)

viz.
x(t) = 2t2 − 5 +

c
t2 , t > 0

where c is an arbitrary real number.

Now we will find the particular solution x0(t) that satisfies the initial value condition
x0(1) = 2 . It is done by insertion of initial value in the general solution, whereby we de-
termine c :

x0(1) = 2 · 12 − 5 +
c

12 2− 5 + c = 2 ⇔ c = 5 . (16-44)

Therefore the conditioned solution function to the differential equation is given by

x0(t) = 2t2 − 5 +
5
t2 , t > 0 . (16-45)

The figure below shows the graphs for the seven solutions that correspond to initial value
conditions x0(0) = b where b ∈ {−4,−3,−2,−1, 0, 1, 2} . The solution we just found is the
uppermost. The others are found in a similar way.
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Example 16.23 The Stationary Response

In Example 16.15 we found the general solution to the differential equation

x′(t) + x(t) = 1 + sin(2t), t ≥ 0 (16-46)

viz.
x(t) = 1− 2

5
cos(2t) +

1
5

sin(2t) + ce−t, t ≥ 0 . (16-47)

Here we show a series of solutions with the initial values from -1 to 3 for t = 0 :

The figure indicates that all solutions approach a periodic oscillation when t→ ∞ . That this
is the case is seen from the general solution of the differential equation where the fourth term
ce−t regardless of the choice for c is negligible due to the negative exponent. The first three
terms constitute the the stationary response.

In the three preceding examples we did not have any difficulties in finding a solution
to the differential equation that satisfied a given initial condition. In fact we saw that,
for each of the initial value conditions considered, exactly one solution that satisfied the
condition exists. That this applies in general we show in the following theorem.
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Theorem 16.24 Existence and Uniqueness of Solutions

Given the differential equation

x′(t) + p(t)x(t) = q(t), t ∈ I (16-48)

where I is an open interval and p(t) and q(t) are continuous functions on I .

Then: for every number pair (t0, b) exactly one (particular) solution x0(t) to the
differential equation exists that satisfies the inital value condition

x0(t0) = b . (16-49)

Proof

From Theorem 16.16 we know that the set of solutions to the differential equation (16-48) is
given by

x(t) = e−P(t)
∫

eP(t)q(t)dt + ce−P(t) (16-50)

where c is an arbitrary real number.

Let us first investigate the indefinite integral that is included in the formula. Does it exist?
This is equivalent to asking: does an antiderivative for the function under the integration
sign exist? We must start with p(t) . Since it is continuous, it has an antiderivative which
we call P(t) . Being an antiderivative, P(t) is differentiable and thus continuous. Since the
exponential function is also continuous the composite function eP(t) is continuous. Finally
since q(t) is continuous, the product eP(t)q(t) is continuous.

By this we have shown that the function under the integration sign is continuous. Therefore
it has an antiderivative, in fact infinitely many antiderivatives that only differ from each other
by constants. We choose an arbitrary antiderivative and call it F(t) . Now we can reformulate
the solution formula as

x(t) = e−P(t)F(t) + ceP(t) (16-51)

where c is an arbitrary real number. Then we insert the initial value condition:

x(t0) = e−P(t0)F(t0) + ce−P(t0) = b ⇔ c = F(t0) + be−P(t0)
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where we first multiplied by eP(t0) on both sides of the equality sign and then isolated c .
Thus in the general solution set exactly one solution exists that satisfies the initial value
condition, viz. the one that emerge when we in (16-51) insert the found value of c .

By this the proof is completed.

�

Exercise 16.25

Again let us consider the linear map f : C1(I) → C0(I) that represents the left-hand side of
a first order linear differential equation:

f (x(t)) = x′(t) + p(t)x(t) (16-52)

We know that ker( f ) is one dimensional and has the basis vector e−P(t). But what is the
image space (the range) for f ?

We end this section by an example that shows how it is possible to “go backwards” from
a given general solution to the differential equation it solves.

Example 16.26 From Solution to the Differential Equation

The general solution to a first order inhomogeneous differential equation is given by

Linhom =
{

x(t) = te−5t + ct , t > 0 c ∈ R
}

. (16-53)

Determine the corresponding differential equation that has the form

x′(t) + p(t)x(t) = q(t) . (16-54)

(That is, determine p(t) and q(t)).

First we consider the corresponding homogeneous differential equation. With the structure
theorem in mind we immediately see that

Lhom =
{

x(t) = ct , t > 0 c ∈ R
}
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By insertion of x(t) = ct in the homogeneous equation x′(t) + p(t)x(t) = 0 we get

c + p(t)ct = 0 , (16-55)

and since this equation must hold for all c

p(t) = −1
t

. (16-56)

Since we now know p(t) , it only remains to determine the right-hand side q(t) . We find this
by insertion of the particular solution x(t) = te−5t into the left-hand side of the equation.

e−5t − 5te−5t − 1
t
· te−5t = −5te−5t = q(t) . (16-57)

Now since both p(t) and q(t) are determined, the whole differential equation is determined
as:

x′(t)− 1
t

x(t) = −5te−5t , t > 0 . (16-58)

16.7 Finite Dimensional Domain

In some cases we know in advance what type of solutions to the differential equation are
of interest. Therefore one can choose to restrict the domain C1(R) . We end this eNote
with an example where the domain is a finite dimensional subset of C1(R) which leads
to the introduction of matrix methods.

Example 16.27 Solution by Matrix Compution

Consider the differential equation

x′(t) + (1− 2t)x(t) = 7t− 4t3 . (16-59)

In this example we are only interested in solutions that belong to the polynomial space
P2(R) , i.e. the subset of C1(R) that has the monomial base (1, t, t2) .

To find the range f (P2(R)) of the linear map f that represents the left-hand side of the
differential equation, we first determine the images of the basis vectors:

f (1) = 1− 2t , f (t) = 1 + t− 2t2 and f (t2) = 2t + t2 − 2t3 .
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Since P3(R) has the monomial base (1, t, t2, t3) , and the found images lie in their span, we
see that the range f (P2(R)) is a subspace of P3(R) .

We want to solve the equation
f (x(t)) = 7t− 4t3,

which can be expressed in matrix form as

F x = b,

where F is the mapping matrix for f with respect to the monomial bases in P2(R) and
P3(R) , x is the coordinate matrix for the unknown polynomial with respect to the monomial
basis in P2(R) , and b is the coordinate matrix for the right-hand side of the differential
equation with respect to the monomial basis in P3(R) .

Thus, when restricted to P2(R), the differential equation becomes an inhomogeneous system
of linear equations. The first three columns of the augmented matrix T of the system are
given by F , while the fourth column is b :

T =


1 1 0 0
−2 1 2 7

0 −2 1 0
0 0 −2 −4

 → rref(T) =


1 0 0 −1
0 1 0 1
0 0 1 2
0 0 0 0

 .

Since the rank of T is seen to be 3, the differential equation has only one solution. Since
the fourth column in rref(T) states the coordinate vector of the solution with respect to the
monomial basis in P2(R) , the solution can immediately be stated as:

x0(t) = −1 + t + 2t2 .

Exercise 16.28

1. Solve the differential equation in Example 16.27 by the guess method or the general
solution formula.

2. How does the general solution differ from the one found in the example?
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Exercise 16.29

Replace the right-hand side in the differential equation in Example 16.27 by the function
q(t) = 1 .

1. Show, using matrix computation, that the differential equation does not have a solution
in the subspace P2(R) given in the example.

2. Using Maple (or other software), find the solution x0(t) to the differential equation
that satisfies the initial value condition x0(t) = 0 and draw its graph.
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