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eNote 15

Symmetric Matrices

In this eNote we will consider one of the most used results from linear algebra – the so-called
spectral theorem for symmetric matrices. In short it says that all symmetric matrices can be
diagonalized by a similarity transformation – that is, by change of basis with a suitable
substitution matrix.
The introduction of these concepts and the corresponding method were given in eNotes 10, 13
and 14, which therefore is a necessary basis for the present eNote.
Precisely in that eNote it became clear that not all matrices can be diagonalized.
Diagonalization requires a sufficiently large number of eigenvalues (the algebraic multiplicities
add up to be as large as possible) and that the corresponding eigenvector spaces actually span all
of the vector space (the geometric multiplicities add up to be as large as possible). It is these
properties we will consider here, but now for symmetric matrices, which turn out to satisfy the
conditions and actually more: the eigenvectors we use in the resulting substitution matrix can
be chosen pairwise orthogonal, such that the new basis is the result of a rotation of the old
standard basis in Rn.
In order to be able to discuss and apply the spectral theorem most effectively we must first
introduce a natural scalar product for vectors in Rn in such a way that we will be able to
measure angles and lengths in all dimensions. We do this by generalizing the well-known
standard scalar product from R2 and R3. As indicated above we will in particular use bases
consisting of pairwise orthogonal vectors in order to formulate the spectral theorem, understand
it and what use we can make of this important theorem.
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15.1 Scalar Product

In the vector space Rn we introduce an inner product, i.e. a scalar product that is a
natural generalization of the well-known scalar product from plane geometry and space
geometry, see eNote 10.

Definition 15.1 Scalar Product

Let a and b be two given vectors in Rn with the coordinates (a1, ..., an) and (b1, ..., bn),
respectively, with respect to the standard basis shalle in Rn:

ea = (a1, ..., an) , and eb = (b1, ..., bn) . (15-1)

Then we define the scalar product, the inner product, (also called the dot product) of
the two vectors in the following way:

a·b = a1b1 + a2b2 + · · ·anbn =
n

∑
i=1

aibi . (15-2)

When Rn is equipped with this scalar product (Rn, ·) is thereby an example of a
so-called Euclidian vector space , or a vector space with inner product.

The scalar product can be expressed as a matrix product:

a · b = ea> · eb =
[

a1 · · · an
]
·


b1
·
·
·

bn

 (15-3)

For the scalar product introduced above the following arithmetic rules apply:
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Theorem 15.2 Arithmetic Rules for the Scalar Product

If a , b and c are vectors in (Rn, ·) and k is an arbitrary real number then:

a · b = b · a (15-4)

a · (b + c) = a · b + a · c (15-5)

a · (kb) = (ka) · b = k(a · b) (15-6)

A main point about the introduction of a scalar product is that we can now talk about
the lengths of the vectors in (Rn, ·):

Definition 15.3 The Length of a Vector

Let a be a vector in (Rn, ·) with the coordinates (a1, ..., an) with respect to the stan-
dard e-basis in Rn. Then the length of a is defined by

|a| =
√

a · a =

√
n

∑
i=1

a2
i . (15-7)

The length of a is also called the norm of a with respect to the scalar product in
(Rn, ·). A vector a is called a proper vector if |a| > 0 .
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It follows from Definition 15.1 that

a·a ≥ 0 for all a ∈ (Rn, ·) and
a·a = 0⇔ a = 0 .

(15-8)

From this we immediately see that

|a| ≥ 0, for all a ∈ (Rn, ·) and
|a| = 0⇔ a = 0 .

(15-9)

Thus a proper vector is a vector that is not the 0-vector.

Finally it follows from Definition 15.1 and Definition 15.3 that for a ∈ (Rn, ·)
and an arbitrary real number k we have that

|ka| = |k| |a| . (15-10)

We can now prove the following important theorem:

Theorem 15.4 Cauchy-Schwarz Inequality

For arbitrary vectors a and b in (Rn, ·)

|a · b| ≤ | a | |b | . (15-11)

Equality holds if and only if a and b are linearly dependent.

Proof

If b = 0 , both sides of (15-11) are equal to 0 and the inequality is thereby satisfied. We now
assume that b is a proper vector.

We put k = b · b and e =
1√
k

b . It then follows from (15-6) that

e · e = (
1√
k

b) · ( 1√
k

b) =
1
k
(b · b) = 1

and thereby that |e| = 1 .

By substituting b =
√

k e in the left hand side and the right hand side of (15-11) we get using
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(15-6) and (15-10):
|a · b| = | a · (

√
k e) | =

√
k |a · e|

and
|a| |b| = |a| |

√
k e | =

√
k |a| |e| .

Therefore we only have to show that for arbitrary a and e , where |e| = 1 ,

|a · e| ≤ | a | (15-12)

where equality holds if and only if a and e are linearly dependent.

For an arbitrary t ∈ R it follows from (15-8), (15-5) and (15-6) that:

0 ≤ (a− te) · (a− te) = a · a + t2(e · e)− 2t(a · e) = a · a + t2 − 2t(a · e) .

If in particular we choose t = a · e , we get

0 ≤ a · a− (a · e)2 ⇔ |a · e| ≤
√

a · a = |a| .

Since it follows from (15-8) that (a− te) · (a− te) = 0 if and only if (a− te) = 0 , we see that
|a · e| = | a | if and only if a and e are linearly dependent. The proof is hereby complete.

�

From the Cauchy-Schwarz inequality follows the triangle inequality that is a general-
ization of the well-known theorem from elementary plane geometry, that a side in a
triangle is always less than or equal to the sum of the other sides:

Corollary 15.5 The Triangle Inequality

For arbitrary vectors a and b in (Rn, ·)

|a + b| ≤ |a|+ |b| . (15-13)

Exercise 15.6

Prove Corollary 15.5.
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Note that from the Cauchy-Schwarz inequality it follows that:

−1 ≤ a · b
|a| · |b| ≤ 1 . (15-14)

Therefore the angle between two vectors in (Rn, ·) can be introduced as follows:

Definition 15.7 The Angle Between Vectors

Let a and b be two given proper vectors in (Rn, ·) with the coordinates (a1, ..., an)
and (b1, ..., bn) with respect to the standard basis in (Rn, ·). Then the angle between
a and b is defined as the value θ in interval [0, π] that satisfies

cos(θ) =
a · b
|a| · |b| . (15-15)

If a · b = 0 we say that the two proper vectors are orthogonal or perpendicular with
respect to each other. This occurs exactly when cos(θ) = 0, that is, when θ = π/2.

15.2 Symmetric Matrices and the Scalar Product

We know the symmetry concept from square matrices:

Definition 15.8

A square matrix A is symmetric if it is equal to its own transpose

A = A> , (15-16)

that is if aij = aj i for all elements in the matrix.

What is the relation between symmetric matrices and the scalar product? This we con-
sider here:
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Theorem 15.9

Let v and w denote two vectors in the vector space (Rn, ·) with scalar product intro-
duced above. If A is an arbitrary (n× n)−matrix then

(A v) ·w = v·
(

A>w
)

. (15-17)

Proof

We use the fact that the scalar product can be expressed as a matrix product:

(A v) · w = (A v)> ·w

=
(

v>A>
)
·w

= v> ·
(

A>w
)

= v ·
(

A>w
)

.

(15-18)

�

This we can now use to characterize symmetric matrices:

Theorem 15.10

A matrix A is a symmetric (n× n)−matrix if and only if

(A v) ·w = v· (A w) (15-19)

for all vectors v and w in (Rn, ·).

Proof

If A is symmetric then we have that A = A> and therefore Equation (15-19) follows directly
from Equation (15-17). Conversely, if we assume that (15-19) applies for all v and w, we
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will prove that A is symmetric. But this follows easily just by choosing suitable vectors, e.g.
v = e2 = (0, 1, 0, ..., 0) and w = e3 = (0, 0, 1, ..., 0) and substitute these into (15-19) as seen
below. Note that A ei is the ith column vector in A.

(A e2) · e3 = a23

= e2· (A e3)

= (A e3) ·e2

= a32 ,

(15-20)

such that a23 = a32. Quite similarly for all other choices of indices i and j we get that aij = aj i
– and this is what we had set out to prove.

�

A basis a in (Rn, ·) consists (as is known from eNote 11) of n linearly independent vec-
tors (a1, ..., an). If in addition the vectors are pairwise orthogonal and have length 1 with
respect to the scalar product, then (a1, ..., an) is an orthonormal basis for (Rn, ·) :

Definition 15.11

A basis a = (a1, ..., an) is an orthonormal basis if

ai · aj =

{
1 for i = j ,
0 for i 6= j .

(15-21)

Exercise 15.12

Show that if n vectors (a1, ..., an) in (Rn, ·) satisfy Equation (15-21) then a = (a1, ..., an) is
automatically a basis for (Rn, ·), i.e. the vectors are linearly independent and span all of
(Rn, ·).
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Exercise 15.13

Show that the following 3 vectors (a1, a2, a3) constitute an orthonormal basis for (R3, ·) for
any given value of θ ∈ R :

a1 = (cos(θ), 0,− sin(θ))

a2 = (0, 1, 0)

a3 = (sin(θ), 0, cos(θ)) .

(15-22)

If we put the vectors from an orthonormal basis into a matrix as columns we get an
orthogonal matrix:

Definition 15.14

An (n× n)−matrix A is said to be orthogonal if the column vectors in A constitute an
orthonormal basis for (Rn, ·), that is if the column vectors are pairwise orthogonal
and all have length 1 – as is also expressed in Equation (15-21).

Note that orthogonal matrices alternatively (and maybe also more descriptively)
could be called orthonormal, since the columns in the matrix are not only pair-
wise orthogonal but also normalized such that they all have length 1. We will
follow international tradition and call the matrices orthogonal.

It is easy to check whether a given matrix is orthogonal:

Theorem 15.15

An (n× n)−matrix Q is orthogonal if and only if

Q> ·Q = En×n , (15-23)

which is equivalent to
Q> = Q−1 . (15-24)
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Proof

See eNote 7 about the computation of the matrix product and then compare with the condi-
tion for orthogonality of the column vectors in Q (Equation (15-21)).

�

We can now explain the geometric significance of an orthogonal matrix: as a linear
map it preserves lengths of, and angles between, vectors. That is the content of the fol-
lowing theorem, which follows immediately from Theorems 15.9 and Theorem 15.15:

Theorem 15.16

An n× n matrix A is orthogonal if and only if the linear mapping f : Rn → Rn given
by f (x) = Ax preserves the scalar product, i.e.:

(Ax)·(Ay) = x·y, for any x, y ∈ Rn.

Orthogonal matrices are regular and have determinant ±1:

Exercise 15.17

Show that for a matrix A to be orthogonal, it is necessary that

|det(A)| = 1 . (15-25)

Show that this condition is not sufficient, thus matrices exist that satisfy this determinant-
condition but that are not orthogonal.

Definition 15.18

An orthogonal matrix Q is called special orthogonal or positive orthogonal if
det(Q) = 1 and it is called negative orthogonal if det(Q) = −1.

In the literature, orthogonal matrices with determinant 1 are called special orthogonal,
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and those with determinant −1 are usually not given a name.

Exercise 15.19

Given the matrix

A =


0 −a 0 a
a 0 a 0
0 −a 0 −a
−a 0 a 0

 , with a ∈ R . (15-26)

Determine the values of a for which A is orthogonal and state in every case whether A is
positive orthogonal or negative orthogonal.

15.3 Gram–Schmidt Orthonormalization

Here we describe a procedure for determining an orthonormal basis for a subspace of
the vector space (Rn, ·). Let U be a p−dimensional subspace of (Rn, ·); we assume
that U is spanned by p given linearly independent vectors (u1, · · ·, up), constituting a
basis u for U. Gram–Schmidt orthonormalization aims at constructing a new basis v
= (v1, v2, · · ·, vp) for the subspace of U from the given basis u such that the new vectors
v1, v2, · · ·, vp are pairwise orthogonal and have length 1.
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Method 15.20 Gram–Schmidt Orthonormalization

Orthonormalization of p linearly independent vectors u1, · · ·, up in (Rn, ·):

1. Start by normalizing u1 and call the result v1, i.e.:

v1 =
u1

|u1|
. (15-27)

2. The next vector v2 in the basis v is now chosen in span{u1, u2} but such that
at the same time v2 is orthogonal to v1, i.e. v2·v1 = 0; finally this vector is
normalized. First we construct an auxiliary vector w2.

w2 = u2 − (u2 · v1) v1

v2 =
w2

|w2|
.

(15-28)

Note that w2 (and therefore also v2) then being orthogonal to v1:

w2 · v1 = (u2 − (u2 · v1) v1) · v1

= u2 · v1 − (u2 · v1) v1 · v1

= u2 · v1 − (u2 · v1) |v1|2

= u2 · v1 − (u2 · v1)

= 0 .

(15-29)

3. We continue in this way

wi = ui − (ui · v1) v1 − (ui · v2) v2 − · · · − (ui · vi−1) vi−1

vi =
wi

|wi|
.

(15-30)

4. Until the last vector up is used:

wp = up −
(
up · v1

)
v1 −

(
up · v2

)
v2 − · · · −

(
up · vp−1

)
vp−1

vp =
wp

|wp|
.

(15-31)

The constructed v-vectors span the same subspace U as the given linearly indepen-
dent u-vectors, U = span{u1, · · ·, up} = span{v1, · · ·, vp} and v = (v1, · · ·, vp)
constituting an orthonormal basis for U.
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Example 15.21

In (R4, ·) we will by the use of the Gram–Schmidt orthonormalization method find an or-
thonormal basis v = (v1, v2, v3) for the 3−dimensional subspace U that is spanned by the
three given linearly independent (!) vectors having the following coordinates with respect to
the standard e-basis in R4:

u1 = (2, 2, 4, 1) , u2 = (0, 0,−5,−5) , u3 = (5, 3, 3,−3) .

We construct the new basis vectors with respect to the standard e-basis in R4 by working
through the orthonormalization procedure. There are 3 ’steps’ since there are in this example
3 linearly independent vectors in U :

1.
v1 =

u1

|u1|
=

1
5
(2, 2, 4, 1) . (15-32)

2.
w2 = u2 − (u2 · v1) v1 = u2 + 5v1 = (2, 2,−1,−4)

v2 =
w2

|w2|
=

1
5
(2, 2,−1,−4) .

(15-33)

3.
w3 = u3 − (u3 · v1) v1 − (u3 · v2) v2 = u3 − 5v1 − 5v2 = (1,−1, 0, 0)

v3 =
w3

|w3|
=

1√
2
(1,−1, 0, 0) .

(15-34)

Thus we have constructed an orthonormal basis for the subspace U consisting of those vec-
tors that with respect to the standard basis have the coordinates:

v1 =
1
5
· (2, 2, 4, 1) , v2 =

1
5
· (2, 2,−1,−4) , v3 =

1√
2
· (1,−1, 0, 0) .

We can check that this is really an orthonormal basis by posing the vectors as columns in a
matrix, which then is of the type (4× 3). Like this:

V =


2/5 2/5 1/

√
2

2/5 2/5 −1/
√

2
4/5 −1/5 0
1/5 −4/5 0

 (15-35)

The matrix V cannot be an orthogonal matrix (because of the type), but nevertheless V can
satisfy the following equation, which shows that the three new basis vectors indeed are
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pairvise orthogonal and all have length 1 !

V> ·V =

 2/5 2/5 4/5 1/5
2/5 2/5 −1/5 −4/5

1/
√

2 −1/
√

2 0 0

 ·


2/5 2/5 1/
√

2
2/5 2/5 −1/

√
2

4/5 −1/5 0
1/5 −4/5 0


=

 1 0 0
0 1 0
0 0 1

 .

(15-36)

Exercise 15.22

In (R4, ·) the following vectors are given with respect to the standard basis e:

u1 = (1, 1, 1, 1) , u2 = (3, 1, 1, 3) , u3 = (2, 0,−2, 4) , u4 = (1, 1,−1, 3) .

We let U denote the subspace in (R4, ·) that is spanned by the four given vectors, that is

U = span{u1, u2, u3, u4} . (15-37)

1. Show that u = (u1, u2, u3) is a basis for U and find coordinates for u4 with respect to
this basis.

2. State an orthonormal basis for U.

Example 15.23

In (R3, ·) a given first unit vector v1 is required for the new orthonormal basis v= (v1, v2, v3)

and the task is to find the two other vectors in the basis. Let us assume that the given vector is
v1 = (3, 0, 4)/5. We see immediately that e.g. v2 = (0, 1, 0) is a unit vector that is orthogonal
to v1. A last vector for the orthonormal basis can then be found directly using the cross
product: v3 = v1 × v2 = 1

5 · (−4, 0, 3).

15.4 The Orthogonal Complement to a Subspace

Let U be a subspace in (Rn, ·) that is spanned by p given linearly independent vectors,
U = span{u1, u2, · · ·, up}. The set of those vectors in (Rn, ·) that are all orthogonal to
all vectors in U is itself a subspace of (Rn, ·), and it has the dimension n− p:
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Definition 15.24

The orthogonal complement to a subspace U of (Rn, ·) is denoted U⊥ and consists
of all vectors in (Rn, ·) that are orthogonal to all vectors in U:

U⊥ = {x ∈ Rn | x · u = 0 , for all u ∈ U } . (15-38)

Theorem 15.25

The orthogonal complement U⊥ to a given p−dimensional subspace U of (Rn, ·) is
itself a subspace in (Rn, ·) and it has dimension dim(U⊥) = n− p .

Proof

It is easy to check all subspace-properties for U⊥; it is clear that if a and b is orthogonal
to all vectors in U and k is a real number, then a + kb are also orthogonal to all vectors in
U. Since the only vector that is orthogonal to itself is 0 this is also the only vector in the
intersection: U ∩U⊥ = {0}. If we let v= (v1, · · ·, vp) denote an orthonormal basis for U and
w= (w1, · · ·, wr) an orthonormal basis for U⊥, then (v1, · · ·, vp, w1, · · ·, wr) is an orthonormal
basis for the subspace S = span{v1, · · ·, vp, w1, · · ·, wr} in (Rn, ·). If we now assume that S
is not all of (Rn, ·), then the basis for S can be extended with at least one vector such that the
extended system is linearly independent in (Rn, ·); by this we get - through the last step in the
Gram–Schmidt method - a new vector that is orthogonal to all vectors in U but which is not
an element in U⊥; and thus we get a contradiction, since U⊥ are defined to be all those vectors
in (Rn, ·) that are orthogonal to every vector in U. Therefore the assumption that S is not all
of (Rn, ·) is wrong. I.e. S = Rn and therefore r + p = n, such that dim(U⊥) = r = n− p; and
this is what we had to prove.

�

Example 15.26

The orthogonal complement to U = span{a, b} in R3 (for linearly independent vectors – and
therefore proper vectors – a and b) is U⊥ = span{a× b}.
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Exercise 15.27

Determine the orthogonal complement to the subspace U = span{u1, u2, u3} in (R4, ·), when
the spanning vectors are given by their respective coordinates with respect to the standard
basis e in R4 as:

u1 = (1, 1, 1, 1) , u2 = (3, 1, 1, 3) , u3 = (2, 0,−2, 4) . (15-39)

15.5 The Spectral Theorem for Symmetric Matrices

We will now start to formulate the spectral theorem and start with the following non-
trivial observation about symmetric matrices:

Theorem 15.28

Let A denote a symmetric (n × n)−matrix. Then the characteristic polynomial
KA(λ) for A has exactly n real roots (counted with multiplicity):

λ1 ≥ λ2 ≥ · · · ≥ λn . (15-40)

I.e. A has n real eigenvalues (counted with multiplicity).

If e.g. {7, 3, 3, 2, 2, 2, 1} are the roots ofKA(λ) for a (7× 7)−matrix A, then these
roots must be represented with their respective multiplicity in the eigenvalue-list:

λ1 = 7 ≥ λ2 = 3 ≥ λ3 = 3 ≥ λ4 = 2 ≥ λ5 = 2 ≥ λ6 = 2 ≥ λ7 = 1 .

Since Theorem 15.28 expresses a decisive property about symmetric matrices, we will
here give a proof of the theorem:
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Proof

From the fundamental theorem of algebra we know that KA(λ) has exactly n complex roots
- but we do not know whether the roots are real; this is what we will prove. So we let α + i β

be a complex root of KA(λ) and we will then show that β = 0. Note that α and β naturally
both are real numbers.

Therefore we have
det (A− (α + i β)E) = 0 , (15-41)

and thus also that
det (A− (α + i β)E) · det (A− (α− i β)E) = 0 (15-42)

such that
det ((A− (α + i β)E) · (A− (α− i β)E)) = 0

det
(
(A− α E)2 + β2 E

)
= 0 .

(15-43)

The last equation yields that the rank of the real matrix
(
(A− α E)2 + β2 E

)
is less than n;

this now means (see eNote 6) that proper real solutions x to the corresponding system of
equations must exist. (

(A− α E)2 + β2 E
)

x = 0 . (15-44)

Let us choose such a proper real solution v to (15-44) with |v| > 0. Using the assumption that
A (and therefore A− αE also) is assumed to be symmetric, we have:

0 =
((

(A− α E)2 + β2 E
)

v
)
· v

=
(
(A− α E)2 v

)
· v + β2 (v · v)

= ((A− α E) v) · ((A− α E) v) + β2|v|2

= | (A− α E) v|2 + β2|v|2 .

(15-45)

Since |v| > 0 we are bound to conclude that β = 0, because all terms in the last expression
are non-negative. And this is what we had to prove.

�

Exercise 15.29

Where was it exactly that we actually used the symmetry of A in the above proof?
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To every eigenvalue λi for a given matrix A is associated an eigenvector space
Eλi , which is subspace of (Rn, ·). If two or more eigenvalues for a given matrix
are equal, i.e. if we have a multiple root (e.g. k times) λi = λi+1 = · · ·λthati+k−1
of the characteristic polynomial, then the corresponding eigenvector spaces are
of course also equal: Eλi = Eλi+1 = · · ·Eλi+k−1 . We will see below in Theorem
15.31 that for symmetric matrices the dimension of the common eigenvector
space Eλi is exactly equal to the algebraic multiplicity k of the eigenvalue λi.

If two eigenvalues λi and λj for a symmetric matrix are different, then the two corre-
sponding eigenvector spaces are orthogonal, Eλi⊥Eλj in the following sense:

Theorem 15.30

Let A be a symmetric matrix and let λ1 and λ2 be two different eigenvalues for A
and let v1 and v2 denote two corresponding eigenvectors. Then v1 · v2 = 0, i.e. they
are orthogonal.

Proof

Since A is symmetric we have from (15-19):

0 = (Av1) ·v2 − v1· (Av2)

= λ1v1·v2 − v1· (λ2v2)

= λ1v1·v2 − λ2v1·v2

= (λ1 − λ2) v1·v2 ,

(15-46)

and since λ1 6= λ2 we therefore get the following conclusion: v1·v2 = 0, and this is what we
had to prove.

�

We can now formulate one of the most widely applied results for symmetric matrices,
the spectral theorem for symmetric matrices that, with good reason, is also called the
theorem about diagonalization of symmetric matrices:
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Theorem 15.31

Let A denote a symmetric (n× n)−matrix. Then a special orthogonal matrix Q exists
such that

Λ = Q−1AQ = Q>AQ is a diagonal matrix . (15-47)

I.e. that a real symmetric matrix can be diagonalized by application of a positive
orthogonal substitution, see eNote 14.
The diagonal matrix can be constructed very simply from the n real eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn of A as:

Λ = diag(λ1, λ2, ..., λn) =


λ1 0 · 0

0 λ2 · 0
· · · ·
0 0 · λn

 , (15-48)

Remember: A symmetric matrix has exactly n real eigenvalues when we count
these with multiplicity.

The special orthogonal matrix Q is next constructed as columns of the matrix by
using the eigenvectors from the corresponding eigenvector-spaces Eλ1 , Eλ2 , · · ·, Eλn

in the corresponding order:

Q = [v1 v2 · · · vn ] , (15-49)

where v1 ∈ Eλ1 , v2 ∈ Eλ2 , · · ·, vn ∈ Eλn , and the choice of eigenvectors in the
respective eigenvector spaces is made so that

1. Any eigenvectors corresponding to the same eigenvalue are chosen orthogonal
(use Gram–Schmidt orthogonalization in every common eigenvector space)

2. The chosen eigenvectors are normalized to have length 1.

3. The resulting matrix Q has determinant 1 (if not then multiply one of the cho-
sen eigenvectors by −1 to flip the sign of the determinant)

That this is so follows from the results and remarks – we go through a series of
enlightening examples below.
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15.6 Examples of Diagonalization

Here are some typical examples that show how one diagonalizes some small symmetric
matrices, i.e. symmetric matrices of type (2× 2) or type (3× 3):

Example 15.32 Diagonalization by Orthogonal Substitution

A symmetric (3× 3)−matrix A is given as:

A =

 2 −2 1
−2 5 −2

1 −2 2

 . (15-50)

We will determine a special orthogonal matrix Q such that Q−1AQ is a diagonal matrix:

Q−1AQ = Q>AQ = Λ . (15-51)

First we determine the eigenvalues for A: The characteristic polynomial for A is

KA(λ) = det

 2− λ −2 1
−2 5− λ −2
1 −2 2− λ

 = (λ− 1)2 · (7− λ) , (15-52)

so A has the eigenvalues λ1 = 7, λ2 = 1, and λ3 = 1. Because of this we already know
through Theorem 15.31 that it is possible to construct a positive orthogonal matrix Q such
that

Q−1AQ = diag(7, 1, 1) =

 7 0 0
0 1 0
0 0 1

 . (15-53)

The rest of the problem now consists in finding the eigenvectors for A that can be used as
columns in the orthogonal matrix Q.

Eigenvectors for A corresponding to the eigenvalue λ1 = 7 are found by solving the homo-
geneous system of equations that has the coefficient matrix

KA(7) = A− 7E =

 −5 −2 1
−2 −2 −2

1 −2 −5

 , (15-54)

which by suitable row operations is seen to have

rref(KA(7)) =

 1 0 −1
0 1 2
0 0 0

 . (15-55)
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The eigenvector solutions to the corresponding homogeneous system of equations are seen
to be

u = t · (1,−2, 1) , t ∈ R , (15-56)

such that E7 = span{(1,−2, 1)}. The normalized eigenvector v1 = (1/
√

6) · (1,−2, 1) is
therefore an orthonormal basis for E7 (and it can also be used as the first column vector in the
wanted Q:

Q =

 1/
√

6 ∗ ∗
−2/
√

6 ∗ ∗
1/
√

6 ∗ ∗

 . (15-57)

We know from Theorem 15.31 that the two last columns are found by similarly determining
all eigenvectors E1 belonging to the eigenvalue λ2 = λ3 = 1 and then choosing two
orthonormal eigenvectors from E1.

The reduction matrix corresponding to the eigenvalue 1 is

KA(1) = A− E =

 1 −2 1
−2 4 −2

1 −2 1

 , (15-58)

which again by suitable row operations is seen to have

rref(KA(1)) =

 1 −2 1
0 0 0
0 0 0

 . (15-59)

The eigenvector solutions to the corresponding homogeneous system of equations are seen
to be

u = t1 · (2, 1, 0) + t2 · (−1, 0, 1) , t1 ∈ R , t2 ∈ R , (15-60)

such that E1 = span{(−1, 0, 1), (2, 1, 0)}.

We find an orthonormal basis for E1 using the Gram–Schmidt orthonormalization of
span{(−1, 0, 1), (2, 1, 0)} like this: Since we have already defined v1 we put v2 to be

v2 =
(−1, 0, 1)
|(−1, 0, 1)| = (1/

√
2) · (−1, 0, 1) , (15-61)

and then as in the Gram–Schmidt process:

w3 = (2, 1, 0)− ((2, 1, 0) · v2) · v2 = (1, 1, 1) . (15-62)

By normalization we finally get v3 = (1/
√

3) · (1, 1, 1) and then we finally have all the ingre-
dients to the wanted orthogonal matrix Q:

Q = [v1 v2 v3] =

 1/
√

6 −1/
√

2 1/
√

3
−2/
√

6 0 1/
√

3
1/
√

6 1/
√

2 1/
√

3

 . (15-63)
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Finally we investigate whether the chosen eigenvectors give a positive orthogonal matrix.
Since

det

 1 −1 1
−2 0 1
1 1 1

 = −6 < 0 , (15-64)

Q has negative determinant. A special orthogonal matrix is found by multiplying one of the
columns of Q by −1, e.g. the last one. Note that a vector v is an eigenvector for A if and only
if −v is also an eigenvector for A. Therefore we have that

Q =
(

v1 v2 (−v3)
)
=

 1/
√

6 −1/
√

2 −1/
√

3
−2/
√

6 0 −1/
√

3
1/
√

6 1/
√

2 −1/
√

3

 (15-65)

is a positive orthogonal matrix that diagonalizes A.

This is checked by a direct computation:

Q−1AQ = Q>AQ

=

 1/
√

6 −2/
√

6 1/
√

6
−1/
√

2 0 1/
√

2
−1/
√

3 −1/
√

3 −1/
√

3

 ·
 2 −2 1
−2 5 −2

1 −2 3

 ·
 1/

√
6 −1/

√
2 −1/

√
3

−2/
√

6 0 −1/
√

3
1/
√

6 1/
√

2 −1/
√

3


=

 7 0 0
0 1 0
0 0 1

 ,

(15-66)
which we wanted to show.

We should finally remark here that, since we are in three dimensions, instead of using Gram–
Schmidt orthonormalization for the determination of v3 we could have used the cross prod-
uct v1 × v2 (see 15.23):

v3 = v1 × v2 = (1/
√

3) · (−1,−1,−1) . (15-67)

Example 15.33 Diagonalization by Orthogonal Substitution

A symmetric (2× 2)−matrix A is given as:

A =

[
11 −12
−12 4

]
. (15-68)
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We will determine a special orthogonal matrix Q such that Q−1AQ is a diagonal matrix:

Q−1AQ = Q>AQ = Λ . (15-69)

First we determine the eigenvalues for A: The characteristic polynomial for A is

KA(λ) = det
([

11− λ −12
−12 4− λ

])
= (λ− 20) · (λ + 5) , (15-70)

so A has the eigenvalues λ1 = 20 and λ2 = −5. Therefore we now have:

Λ =

[
20 0
0 −5

]
. (15-71)

The eigenvectors for A corresponding to the eigenvalue λ1 = 20 are found by solving the
homogeneous system of equations having the coefficient matrix

KA(20) = A− 20E =

[
−9 −12
−12 −16

]
, (15-72)

which, through suitable row operations, is shown to have the equivalent reduced matrix:

rref(KA(20)) =
[

3 4
0 0

]
. (15-73)

The eigenvector solutions to the corresponding homogeneous system of equations are found
to be

u = t · (4,−3) , t ∈ R , (15-74)

such that E20 = span{(4,−3)}. The normalized eigenvector v1 = (1/5) · (4,−3) is therefore
an orthonormal basis for E20 (and it can therefore be used as the first column vector in the
wanted Q:

Q =

[
4/5 ∗
−3/5 ∗

]
. (15-75)

The last column in Q is an eigenvector corresponding to the second eigenvalue λ2 = −5
and can therefore be found from the general solution E−5 to the homogeneous system of
equations having the coefficient matrix

KA(−5) = A− 5 · E =

[
16 −12
−12 9

]
, (15-76)

but since we know that the wanted eigenvector is orthogonal to the eigenvector v1 we can just
use a vector perpendicular to the first eigenvector, v2 = (1/5) · (3, 4), evidently a unit vector,
that is orthogonal to v1. It is easy to check that v2 is an eigenvector for A corresponding to
the eigenvalue −5 :

KA(−5) · v2 =

[
16 −12
−12 9

]
·
[

3
4

]
=

[
0
0

]
. (15-77)
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Therefore we substitute v2 as the second column in Q and get

Q =

[
4/5 3/5
−3/5 4/5

]
. (15-78)

This matrix has the determinant det (Q) = 1 > 0, so Q is a positive orthogonal substitution
matrix satisfying that Q−1AQ is a diagonal matrix:

Q−1AQ = Q>AQ

=

[
4/5 −3/5
3/5 4/5

]
·
[

11 −12
−12 4

]
·
[

4/5 3/5
−3/5 4/5

]
=

[
20 0
0 −5

]
= diag(20,−5) = Λ .

(15-79)

Example 15.34 Diagonalization by Orthogonal Substitution

A symmetric (3× 3)−matrix A is given like this:

A =

 7 −2 0
−2 6 −2

0 −2 5

 . (15-80)

We will determine a positive orthogonal matrix Q such that Q−1AQ is a diagonal matrix:

Q−1AQ = Q>AQ = Λ . (15-81)

First we determine the eigenvalues for A: The characteristic polynomial for A is

KA(λ) = det

 7− λ −2 1
−2 6− λ −2

1 −2 5− λ

 = −(λ− 3) · (λ− 6) · (λ− 9) , (15-82)

from which we read the three different eigenvalues λ1 = 9, λ2 = 6, and λ3 = 3 and then the
diagonal matrix we are on the road to describe as Q−1AQ :

Λ = diag(9, 6, 3) =

 9 0 0
0 6 0
0 0 3

 (15-83)

The eigenvectors for A corresponding to the eigenvalue λ3 = 3 are found by solving the
homogeneous system of equations having the coefficient matrix

KA(3) = A− 3 · E =

 4 −2 0
−2 3 −2

0 −2 2

 , (15-84)
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which through suitable row operations is seen to have

rref(KA(3)) =

 2 0 −1
0 1 −1
0 0 0

 . (15-85)

The eigenvector solutions to the corresponding homogeneous system of equations are found
to be

u3 = t · (1, 2, 2) , t ∈ R , (15-86)

such that E3 = span{(1, 2, 2)}. The normalized eigenvector v1 = (1/3) · (1, 2, 2) is therefore
an orthonormal basis for E3 so it can be used as the third column vector in the wanted Q; note
that we have just found the eigenvector space to the third eigenvalue on the list of eigenvalues
for A :

Q =

 ∗ ∗ 1/3
∗ ∗ 2/3
∗ ∗ 2/3

 . (15-87)

We know from Theorem 15.31 that the two last columns are found by similarly determining
the eigenvector space E6 corresponding to eigenvalue λ2 = 6, and the eigenvector space E9

corresponding to the eigenvalue λ1 = 9.

For λ2 = 6 we have:

KA(6) = A− 6 · E =

 1 −2 0
−2 0 −2

0 −2 −1

 , (15-88)

which by suitable row operations is found to have the following equivalent reduced matrix:

rref(KA(6)) =

 1 0 1
0 2 1
0 0 0

 . (15-89)

The eigenvector solutions to the corresponding homogeneous system of equations are found
to be

u2 = t · (−2,−1, 2) , t ∈ R , (15-90)

so that E6 = span{(−2,−1, 2)}. The normalized eigenvector v2 = (1/3) · (−2,−1, 2) is
therefore an orthonormal basis for E6 (and it can therefore be used as the second column vector
in the wanted Q:

Q =

 ∗ −2/3 1/3
∗ −1/3 2/3
∗ 2/3 2/3

 . (15-91)

Instead of determining the eigenvector space E9 for the last eigenvalue λ1 = 9 in the same
way we use the fact that this eigenvector space is spanned by a vector v1 that is orthogonal
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to both v3 and v2, so we can use v1 = v2 × v3 = (1/3) · (−2, 2,−1), and then we finally get

Q =

 −2/3 −2/3 1/3
2/3 −1/3 2/3
−1/3 2/3 2/3

 . (15-92)

This matrix is positive orthogonal since det(Q) = 1 > 0, and therefore we have determined
a positive orthogonal matrix Q that diagonalizes A to the diagonal matrix Λ. This is easily
proved by direct computation:

Q−1AQ = Q>AQ

=

 −2/3 2/3 −1/3
−2/3 −1/3 2/3

1/3 2/3 2/3

 ·
 7 −2 0
−2 6 −2

0 −2 5

 ·
 −2/3 −2/3 1/3

2/3 −1/3 2/3
−1/3 2/3 2/3


=

 9 0 0
0 6 0
0 0 3


= diag(9, 6, 3) = Λ .

(15-93)

15.7 Controlled Construction of Symmetric Matrices

In the light of the above examples it is clear that if only we can construct all orthogonal
(2× 2)- and (3× 3)-matrices Q (or for that matter (n× n)-matrices), then we can produce
all symmetric (2× 2)- and (3× 3)-matrices A as A = Q ·Λ ·Q>. We only have to choose
the wanted eigenvalues in the diagonal for Λ.

Every special orthogonal 2× 2-matrix has the following form, which shows that it is a
rotation given by a rotation angle ϕ :

Q =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
, (15-94)

where ϕ is an angle in the interval [−π, π]. Note that the column vectors are orthogonal
and both have length 1. Furthermore the determinant det(Q) = 1, so Q is special
orthogonal.
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Exercise 15.35

Prove the statement that every special orthogonal matrix can be stated in the form (15-94) for
a suitable choice of the rotation angle ϕ.

If ϕ > 0 then Q rotates vectors in the positive direction, i.e. counter-clockwise; if ϕ < 0
then Q rotates vectors in the negative direction, i.e. clockwise.

Definition 15.36 Rotation Matrices

Every special orthogonal (2× 2)-matrix is also called a rotation matrix.

Since every positive orthogonal 3 × 3-matrix similarly can be stated as a product of
rotations about the three coordinate axes – see below – we will extend the naming as
follows:

Definition 15.37 Rotation Matrices

Every special orthogonal (3× 3)-matrix is called a rotation matrix.

A rotation about a coordinate axis, i.e. a rotation by a given angle about one of the
coordinate axes, is produced with one of the following special orthogonal matrices:

Rx(u) =

 1 0 0
0 cos(u) − sin(u)
0 sin(u) cos(u)



Ry(v) =

 cos(v) 0 sin(v)
0 1 0

− sin(v) 0 cos(v)



Rz(w) =

 cos(w) − sin(w) 0
sin(w) cos(w) 0

0 0 1

 ,

(15-95)
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where the rotation angles are u, v, and w, respectively.

Exercise 15.38

Show by direct calculation that the three axis-rotation matrices and every product of axis-
rotation matrices really are special orthogonal matrices, i.e. they satisfy R−1 = R> and
det(R) = 1.

Exercise 15.39

Find the image vectors of every one of the given vectors a, b, and c by use of the given
mapping matrices Qi :

Q1 = Rx(π/4) , a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1)

Q2 = Ry(π/4) , a = (1, 1, 1), b = (0, 1, 0), c = (0, 0, 1)

Q3 = Rz(π/4) , a = (1, 1, 0), b = (0, 1, 0), c = (0, 0, 1)

Q4 = Ry(π/4) ·Rx(π/4) , a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1)

Q5 = Rx(π/4) ·Ry(π/4) , a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1) .

(15-96)

The combination of rotations about the coordinate axes by given rotation angles u, v,
and w about the x−axis, y−axis, and z−axis is found by computing the matrix product
of the three corresponding rotation matrices.

Here is the complete general expression for the matrix product for all values of u, v and
w:

R(u, v, w) = Rz(w) ·Ry(v) ·Rx(u)

=

 cos(w) cos(v) − sin(w) cos(u)− cos(w) sin(v) sin(u) sin(w) sin(u)− cos(w) sin(v) cos(u)
sin(w) cos(v) cos(w) cos(u)− sin(w) sin(v) sin(u) − cos(w) sin(u)− sin(w) sin(v) cos(u)

sin(v) cos(v) sin(u) cos(v) cos(u)

 .

As one might suspect, it is possible to prove the following theorem:
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Theorem 15.40 Axis Rotation Angles for a Given Rotation Matrix

Every rotation matrix R (i.e. every special orthogonal matrix Q) can be written as
the product of 3 axis-rotation matrices:

R = R(u, v, w) = Rz(w) ·Ry(v) ·Rx(u) . (15-97)

In other words: the effect of every rotation matrix can be realized by three con-
secutive rotations about the coordinate axes – with the rotation angles u, v, and w,
respectively, as given in the above matrix product.

When a given special orthogonal matrix R is given (with its matrix ele-
ments rij), it is not difficult to find these axis rotation angles. As is evident
from the above matrix product we have e.g. that sin(v) = r31 such that
v = arcsin(r31) or v = π − arcsin(r31), and cos(w) cos(v) = r11 such that
w = arccos(r11/ cos(v)) or v = − arccos(r31/ cos(v)), if only cos(v) 6= 0 i.e. if
only v 6= ±π/2.

Exercise 15.41

Show that if v = π/2 or v = −π/2 then there exist many values of u and w giving the same
R(u, v, w). I.e. not all angle values are uniquely determined in the interval ] − π, π ] for
every given rotation matrix R.

Exercise 15.42

Show that if R is a rotation matrix (a positive orthogonal matrix) then R> is also a rotation
matrix, and vice versa: if R> is a rotation matrix then R is also a rotation matrix.

Exercise 15.43

Show that if R1 and R2 are rotation matrices then R1 ·R2 and R2 ·R1 are also rotation matrices.
Give examples that show that R1 ·R2 is not necesarily the same rotation matrix as R2 ·R1.
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15.8 Structure of Rotation Matrices

As mentioned above (Exercise 15.35), every 2 × 2 special orthogonal matrix has the
form:

Q =

[
cos φ − sin φ

sin φ cos φ

]
.

This is a rotation of the plane anticlockwise by the angle φ. The angle φ is related to the
eigenvalues of Q:

Exercise 15.44

Show that the eigenvalues of the matrix Q above are:

λ1 = eiφ, λ2 = e−iφ.

How about the 3× 3 case? We already remarked that any 3× 3 special orthogonal matrix
can be written as a composition of rotations about the three coordinate matrices: Q =
Rz(w) · Ry(v) · Rx(u). But is Q itself a rotation about some axis (i.e. some line through
the origin)? We can prove this is so, by examining the eigenvalues and eigenvectors of
Q.

Theorem 15.45

The eigenvalues of any orthogonal matrix all have absolute value 1.

Proof. If λ is an eigenvalue of an orthogonal matrix Q, there is, by definition, a non-zero
complex eigenvector v in Cn \ {0}. Writing v as a column matrix, we then have:

λλ̄vT · v̄ = (λv)T · (λv)
= (Q · v)T · (Q · v) (Q · v = λv)
= vT ·QT ·Q · v̄ (Q̄ = Q)

= vT · E · v̄ (QT ·Q = E)
= vT · v̄.
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Since v 6= 0, it follows that vT · v̄ is a non-zero (real) number:

vT · v̄ = v1v̄1 + v2v̄2 . . . vnv̄n

= |v1|2 + |v2|2 + . . . |vn|2 > 0.

Dividing λλ̄vT · v̄ = vT · v̄ by this number we get:

|λ|2 = λλ̄ = 1.

We can now apply this to the eigenvalues of a 3× 3 special orthogonal matrix:

Theorem 15.46

Let Q be a 3× 3 special orthogonal matrix, i.e. QTQ = E, and det Q = 1. Then the
eigenvalues are:

λ1 = 1, λ2 = eiφ, λ3 = e−iφ,

for some φ ∈]− π, π].

Proof. Q is a real matrix, so all eigenvalues are either real or come in complex conjugate
pairs. There are 3 of them, because Q is a 3× 3 matrix, so the characteristic polynomial
has degree 3. Hence there is at least one real eigenvalue:

λ1 ∈ R.

Now there are two possibilities:
Case 1: All roots are real: then, since all eigenvalues have absolute value 1 (by Theorem
15.45), and

1 = det Q = λ1λ2λ3

either one or all three of the eigenvalues are equal to 1.

Case 2: λ1 is real and the other two are complex conjugate, λ3 = λ̄2, so:

1 = det Q = λ1λ2λ̄2 = λ1|λ2|2 = λ1,

where we used that |λ2| = 1. Any complex number λ with absolute value 1 is of the
form eiφ, where φ = Arg(λ), so this gives the claimed form of λ1, λ2 and λ3.

Note that the case λ2 = λ3 = 1 or −1 (in Case 1) correspond respectively to φ = 0 and
φ = π in the wording of the theorem.
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We can also say something about the eigenvectors corresponding to the eigenvalues.

Theorem 15.47

Let Q be a special orthogonal matrix, and denote the eigenvalues as in Theorem
15.46. If the eigenvalues are not all real, i.e. Im(λ2) 6= 0, then the eigenvectors
corresponding to λ2 and λ3 are necessarily of the form:

v2 = x + iy, v3 = v̄2 = x− iy,

where x and y are respectively the real and imaginary parts of v2, and

x·y = 0 and |x| = |y|.

If v1 is an eigenvector for λ1 = 1, then:

v1·x = v1·y = 0

Proof. We have Qv2 = λ2v2, and Qv̄2 = λ̄2v̄2. So clearly a third eigenvector, corre-
sponding to λ̄2, is v3 = v̄2. Using QTQ = E, we have

vT
2 v2 = vT

2 QTQv2 = (Qv2)
T(Qv2) = λ2

2vT
2 v2.

If vT
2 v2 6= 0, then we can divide by this number to get λ2

2 = 1. But λ2 = a + bi, with
b 6= 0, so this would mean: 1 = λ2

2 = a2 − b2 + 2iab. The imaginary part is: ab = 0,
which implies that a = 0 and hence λ2

2 = −b2, which cannot be equal to 1. Hence:

vT
2 v2 = 0.

Writing v2 = x + iy, this is:

0 = (xT + iyT)(x + iy)
= xTx− yTy + i(xTy + yTx).

The real part of this equation is:

xTx− yTy = 0, i.e., x·x = |x|2 = y·y = |y|2,

and the imaginary part is:

0 = xTy + yTx = x·y + y·x = 2x·y.
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Lastly, if v1 is an eigenvector for λ1 = 1, then, by the same argument as above,

vT
1 v2 = 1 · λ2 · vT

1 v2,

which must be zero, since λ2 6= 1. This is:

0 = vT
1 (x + iy) = v1·x + i v1·y.

Since v1 is real, the real and imaginary parts of this give v1·x = v1·y = 0.

Now we can give a precise description of the geometric effect of a 3× 3 rotation matrix:

Theorem 15.48

Let Q be a 3× 3 special orthogonal matrix, and λ1 = 1, λ2 = eiφ, λ3 = e−iφ be its
eigenvalues, with corresponding eigenvectors v1, v2 and v3 = v̄2. Then:

1. The map f : R3 → R3 given by f (x) = Qx is a rotation by angle φ around the
line spanned by v1.

2. If λ2 is not real then an orthonormal basis for R3 is given by:

u1 =
v1

|v1|
, u2 =

Im v2

|Im v2|
, u3 =

Re v2

|Re v2|
,

where v2 is an eigenvector for λ2 = eiφ. The mapping matrix for f with respect
to this basis is:

u fu =

 1 0 0
0 cos φ − sin φ

0 sin φ cos φ

 .

3. If λ2 is real then Q is either the identity map (λ2 = λ3 = 1) or a rotation by
angle π (λ2 = λ3 = −1).

Proof. Statement 1 follows from statements 2 and 3, since these represent rotations by
angle φ around the v1 axis.

For statement 2, by Theorem 15.47, if λ2 is not real, then u = (u1, u2, u3) as defined
above are an orthonormal basis for R3, since they are mutually orthogonal and of length
1.
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To find the mapping matrix, we have f (u1) = u1 = 1 · u1 + 0 · u2 + 0 · u3, which gives
the first column. For u2 and u3, according to Theorem 15.47, the real and imaginary
parts of v2 have the same length, so we can rescale v2 by dividing by this number to get

w = u3 + iu2, u2 =
Im v2

|Im v2|
, u3 =

Re v2

|Re v2|
,

where w is an eigenvector for f with eigenvalue eiφ. That is:

eiφw = (cos φ + i sin φ)(u3 + iu2) = f (u3 + iu2)

(cos φu3 − sin φu2) + i(sin φu3 + cos φu2) = f (u3) + i f (u2).

The imaginary and real parts of this equation give:

f (u2) = cos φu2 + sin φu3

f (u3) = − sin φu2 + cos φu3,

and this gives us the second and third columns of the mapping matrix.

This mapping matrix is precisely the matrix of a rotation by angle φ around the v1 axis
(compare u fu with the matrix Rx(u) discussed earlier).

For statement 3, the special case that λ2 is real, if λ2 = λ3 = 1, then φ = 0 and Q is the
identity matrix, which can be regarded as a rotation by angle 0 around any axis.

Finally, for the case λ2 = λ3 = −1, briefly: let E1 = span{v1}. Choose any orthonormal
basis for the orthogonal complement E⊥1 . Using this, one can show that the restricition of
f to E⊥1 is a 2× 2 rotation matrix with a repeated eigenvalue −1. This means it is minus
the identity matrix on E⊥1 , i.e. a rotation by angle π, from which the claim follows.

Example 15.49

The axis of rotation for a 3× 3 rotation matrix is sometimes called the Euler axis. Let’s find
the Euler axis, and the rotation angle for the special orthogonal matrix:

Q =
1
3

 −2 −2 1
2 −1 2
−1 2 2

 ,

which was used for a change of basis in Example 15.34.

The eigenvalues are:

λ1 = 1, λ2 = −2
3
+ i
√

5
3

, λ3 = −2
3
− i
√

5
3

,
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with corresponding eigenvectors:

v1 =

 0
1
2

 , v2 =

 −i
√

5
−2
1

 , v3 = v2.

So the axis of rotation is the line spanned by v1 = (0, 1, 2), and the angle of rotation is:

φ = Arg(λ2) = − arctan

(√
5

2

)
+ π

We can set:

u1 = v1 =
1√
5

 0
1
2

 , u2 = Imv2 =

 −1
0
0

 , u3 = Rev2 =
1√
5

 0
−2
1

 ,

and, setting U = [u1, u2, u3], the matrix of f in this basis is:

u fu = UTQU =

 1 0 0
0 − 2

3 −
√

5
3

0
√

5
3 − 2

3

 =

 1 0 0
0 cos φ − sin φ

0 sin φ cos φ

 .

Exercise 15.50

Find the axis and angle of rotation for the rotation matrix: Q = 1
2

 0 −
√

2
√

2√
2 1 1

−
√

2 1 1

.

Conversely, we can construct a matrix that rotates by any desired angle around any
desired axis:

Example 15.51

Problem: Construct the matrix for the linear map f : R3 → R3 that rotates 3-space around
the axis spanned by the vector a = (1, 1, 0) anti-clockwise by the angle π/2.

Solution: Choose any orthonormal basis (u1, u2, u3) where u1 points in the direction of a. For
example:

u1 =
1√
2

 1
1
0

 , u2 =
1√
2

 −1
1
0

 , u3 =

 0
0
1

 .
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We have chosen them such that det([u1, u2, u3]) = 1. This means that the orientation of
space is preserved by this change of basis, so we know that the rotation from the following
construction will be anti-clockwise around the axis.

The matrix with respect to the u-basis that rotates anti-clockwise around the u1-axis by the
angle π/2 is:

u fu =

 1 0 0
0 cos(π/2) − sin(π/2)
0 sin(π/2) cos(π/2)

 =

 1 0 0
0 0 −1
0 1 0

 .

The change of basis matrix from u to the standard e-basis is:

e Mu = [u1, u2, u3] =
1√
2

 1 −1 0
1 1 0
0 0

√
2

 ,

so the matrix of f with respect to the standard basis is:

e fe = e Mu u fu e MT
u =

1
2

 1 1
√

2
1 1 −

√
2

−
√

2
√

2 0

 .

Note: for the vectors u1 and u2, it would have made no difference what choice we make as
long as they are orthogonal to a, and orthonormal. If we rotate them in the plane orthogonal
to a, this rotation will cancel in the formula e Mu u fu e MT

u .

Exercise 15.52

Find an orthogonal matrix Q that, in the standard e-basis for R3, represents a rotation about
the axis spanned by a = (1, 1, 1) by an angle π/2.
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15.9 Reduction of Quadratic Polynomials

A quadratic form in (Rn, ·) is a quadratic polynomial in n variables – but without linear
and constant terms.

Definition 15.53

Let A be a symmetric (n× n)-matrix and let (x1, x2, · · · , xn) denote the coordinates
for an arbitrary vector x in (R, ·) with respect to the standard basis e in Rn.

A quadratic form in (R, ·) is a function of the n variables (x1, x2, · · · , xn) in the fol-
lowing form:

PA(x) = PA(x1, x2, · · · , xn) =
[

x1 x2 · · xn
]
·A ·


x1
x2
·
·

xn


=

n

∑
i=1

n

∑
j=1

aij · xi · xj ,

(15-98)

aij being the individual elements in A.

Example 15.54 Quadratic Form as Part of a Quadratic Polynomial

Let f (x, y) be the following quadratic polynomial in the two variables x and y.

f (x, y) = 11 · x2 + 4 · y2 − 24 · x · y− 20 · x + 40 · y− 60 . (15-99)

Then we can separate the polynomial in two parts:

f (x, y) = PA(x, y) + (−20 · x + 40 · y− 60) , (15-100)

where PA(x, y) is the quadratic form

PA(x, y) = 11 · x2 + 4 · y2 − 24 · x · y (15-101)

that is represented by the matrix

A =

[
11 −12
−12 4

]
(15-102)
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We will now see how the spectral theorem can be used for the description of every
quadratic form by use of the eigenvalues for the matrix that represents the quadratic
form.

Theorem 15.55 Reduction of Quadratic Forms

Let A be a symmetric matrix and let PA(x1, · · · , xn) denote the corresponding
quadratic form in (Rn, ·) with respect to standard coordinates. By a change of ba-
sis to new coordinates x̃1, · · · , x̃n given by the positive orthogonal change of basis
matrix Q that diagonalizes A we get the reduced expression for the quadratic form:

PA(x1, · · · , xn) = P̃Λ(x̃1, · · · , x̃n) = λ1 · x̃2
1 + · · ·+ λn · x̃2

n , (15-103)

where λ1, · · · , λn are the n real eigenvalues for the symmetric matrix A.

The reduction in the theorem means that the new expression does not contain
any product terms of the type xi · xj for i 6= j.

Proof

Since A is symmetric it can according to the spectral theorem be diagonalized by an orthog-
onal substitution matrix Q. The gathering of column vectors (v1, · · · , vn) in Q constitutes a
new basis v in (Rn, ·).

Let x be an arbitrary vector in Rn. Then we have the following set of coordinates for x, partly
with respect to the standard e-basis and partly with respect to the new basis v

ex = (x1, · · · , xn) ,

vx = (x̃1, · · · , x̃n) .
(15-104)
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Then
PA(x) = PA(x1, · · · , xn)

=
[

x1 · · · xn
]
·A ·


x1

·
·

xn



=
[

x1 · · · xn
]
·Q ·Λ ·Q−1 ·


x1

·
·

xn



=
([

x1 · · · xn
]
·Q
)
·Λ ·

Q> ·


x1

·
·

xn




=
[

x̃1 · · · x̃n
]
·Λ ·


x̃1

·
·

x̃n



=
[

x̃1 · · · x̃n
]
·


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 . . . λn

 ·


x̃1

·
·

x̃n



= P̃Λ(x̃1, · · · , x̃n) = λ1 · x̃2
1 + · · ·+ λn · x̃2

n .

(15-105)

�

Note that the matrix that represents the quadratic form in Example 15.54,
Equation (15-102), is not much different from the Hessian Matrix H f (x, y) for
f (x, y), which is also a constant matrix, because f (x, y) is a second degree poly-
nomial. See eNote 22. In fact we observe that:

A =
1
2
·H f (x, y) , (15-106)

and this is no coincidence.



eNote 15 15.9 REDUCTION OF QUADRATIC POLYNOMIALS 40

Lemma 15.56

Let f (x1, x2, · · · , xn) denote an arbitrary quadratic polynomial without linear and
constant terms. Then f (x1, x2, · · · , xn) can be expressed as a quadratic form in ex-
actly one way – i.e. there exists exactly one symmetric matrix A such that:

f (x) = f (x1, x2, · · · , xn) = PA(x1, x2, · · · , xn) . (15-107)

The sought matrix is:

A =
1
2
·H f (x) , (15-108)

where H f (x) is (the constant) Hessian matrix for the function f (x) =
f (x1, x2, · · · , xn).

Proof

We limit ourselves to the case n = 2 and refer the analysis to functions of two variables in
eNote 22: If f (x, y) is a polynomial in two variables without linear (and constant) terms, i.e.
a quadratic form in (R2, ·), then the wanted A-matrix is exactly the (constant) Hesse-matrix
for f (x, y).

�

This applies generally, if we extend the definition of Hessian matrices to functions of
more variables as follows: Let f (x1, x2, · · · , xn) be an arbitrary smooth function of n
variables in the obvious meaning for functions of more variables (than two). Then the
corresponding Hessian matrices are the following symmetric (n × n)-matrices which
contain all the second-order partial derivatives for the function f (x) evaluated at an
arbitrary point x ∈ Rn:

H f (x1, x2, · · · , xn) =


f ′′x1 x1

(x) f ′′x1 x2
(x) · · · f ′′x1 xn(x)

f ′′x2 x1
(x) f ′′x2 x2

(x) · · · f ′′x2 xn(x)
...

... . . . ...
f ′′xn x1

(x) f ′′xn x2
(x) . . . f ′′xn xn(x)

 . (15-109)

In particular if f (x, y, z) is a smooth function of three variables (as in Example 15.57



eNote 15 15.9 REDUCTION OF QUADRATIC POLYNOMIALS 41

below) we get at every point (x, y, z) ∈ R3:

H f (x, y, z) =

 f ′′xx(x, y, z) f ′′xy(x, y, z) f ′′xz(x, y, z)
f ′′xy(x, y, z) f ′′yy(x, y, z) f ′′yz(x, y, z)
f ′′xz(x, y, z) f ′′yz(x, y, z) f ′′zz(x, y, z)

 , (15-110)

where we explicitly have used the symmetry of the Hessian matrix, e.g. f ′′zx(x, y, z) =
f ′′xz(x, y, z).

Example 15.57 Quadratic Form with a Representing Matrix

Let f (x, y, z) denote the following function of three variables:

f (x, y, z) = x2 + 3 · y2 + z2 − 8 · x · y + 4 · y · z . (15-111)

Then f (x, y, z) is a quadratic form PA(x, y, z) with

A =
1
2
·H f (x, y, z) =

1
2
·

 f ′′xx(x, y, z) f ′′xy(x, y, z) f ′′xz(x, y, z)
f ′′xy(x, y, z) f ′′yy(x, y, z) f ′′yz(x, y, z)
f ′′xz(x, y, z) f ′′yz(x, y, z) f ′′zz(x, y, z)

 =

 1 −4 0
−4 3 2
0 2 1

 .

(15-112)
We can prove 15-108 by direct computation:

PA(x, y, z) =
[

x y z
]
·

 1 −4 0
−4 3 2
0 2 1

 ·
 x

y
z


=
[

x y z
]
·

 x− 4 · y
3 · y− 4 · x + 2 · z

z + 2 · y


= x · (x− 4 · y) + y · (3 · y− 4 · x + 2 · z) + z · (z + 2 · y)
= x2 + 3 · y2 + z2 − 8 · x · y + 4 · y · z
= f (x, y, z) .

(15-113)

As is shown in Section 21.4 in eNote 21 the signs of the eigenvalues for the Hessian
matrix play a decisive role when we analyse and inspect a smooth function f (x, y) at
and about a stationary point. And since it is again the very same Hessian matrix that
appears in the present context we will here tie a pair of definitions to this sign-discussion
– now for the general (n × n) Hessian matrices, and thus also for general quadratic
forms represented by symmetric matrices A :
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Definition 15.58 Definite and Indefinite Symmetric Matrices

We let A denote a symmetric matrix. Let A have the n real eigenvalues
λ1, λ2, · · · , λn. the we say that

1. A is positive definite if all eigenvalues λi are positive.

2. A is positive semi-definite if all eigenvalues λi are non-negative (every eigen-
value is greater than or equal to 0).

3. A is negative definite if all eigenvalues λi are negative.

4. A is negative semi-definite if all eigenvalues λi are non-positive (every eigen-
value is less than of equal to 0).

5. A is indefinite if A is neither positive semi-definite nor negative semi-definite.

We now formulate an intuitively reasonable result that relates this ”definiteness” to the
values which the quadratic polynomial PA(x) assumes for different x ∈ Rn.

Theorem 15.59 The Meaning of Positive Definiteness

If A is a symmetric positive definite matrix then the quadratic form PA(x) is positive
for all x ∈ Rn − 0.

Proof

We refer to Theorem 15.55 and from that we can use the reduced expression for the quadratic
form:

PA(x1, · · · , xn) = P̃Λ(x̃1, · · · , x̃n) = λ1 · x̃2
1 + · · ·+ λn · x̃2

n , (15-114)

from which it is clear to see that since A is positive definite we get λi > 0 for all i = 1, · · · , n
and then PA(x) > 0 for all x 6= 0, which corresponds to the fact that none of the sets of
coordinates for x can be (0, · · · , 0).

�

Similar theorems can be formulated for negative definite and indefinite matrices, and
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they are obviously useful in investigations of functions, in particular in investigations
of the functional values around stationary points, as shown in eNote 21.

15.10 Reduction of Quadratic Polynomials

By reducing the quadratic form part of a quadratic polynomial we naturally get an
equivalently simpler quadratic polynomial – now without product terms. We give a
couple of examples.

Example 15.60 Reduction of a Quadratic Polynomial, Two Variables

We consider the following quadratic polynomial in two variables:

f (x, y) = 11 · x2 + 4 · y2 − 24 · x · y− 20 · x + 40 · y− 60 (15-115)

The part of the polynomial that can be described by a quadratic form is now

PA(x, y) = 11 · x2 + 4 · y2 − 24 · x · y , (15-116)

where

A =

[
11 −12
−12 4

]
. (15-117)

Exactly this matrix is diagonalized by a positive orthogonal substitution Q in Example 15.32:
The eigenvalues for A are λ1 = 20 and λ2 = −5 and

Q =

[
4/5 3/5
−3/5 4/5

]
=

[
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

]
, where ϕ = − arcsin(3/5) . (15-118)

The change of coordinates x̃, ỹ consequently is a rotation of the standard coordinate system
by an angle of − arcsin(3/5).

We use the reduction theorem 15.55 and get that the quadratic form PA(x, y) in the new
coordinates has the following reduced expression:

PA(x, y) = P̃Λ(x̃, ỹ) = 20 · x̃2 − 5 · ỹ2 . (15-119)

By introducing the reduced expression for the quadratic form in the polynomial f (x, y) we
get:

f (x, y) = 20 · x̃2 − 5 · ỹ2 + (−20 · x + 40 · y− 60) , (15-120)
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where all that remains is to express the last parenthesis by using the new coordinates. This
is done using the substitution matrix Q. We have the linear relation between the coordinates
(x, y) and (x̃, ỹ): [

x
y

]
= Q ·

[
x̃
ỹ

]
=

[
4/5 3/5
−3/5 4/5

]
·
[

x̃
ỹ

]
(15-121)

so that:
x =

1
5
· (4 · x̃ + 3 · ỹ)

y =
1
5
· (−3 · x̃ + 4 · ỹ) .

(15-122)

We substitute these rewritings of x and y in (15-120) and get:

f (x, y) = 20 · x̃2 − 5 · ỹ2 + (−4 · (4 · x̃ + 3 · ỹ) + 8 · (−3 · x̃ + 4 · ỹ)− 60)

= 20 · x̃2 − 5 · ỹ2 − 40 · x̃ + 20 · ỹ− 60 .
(15-123)

Thus we have reduced the expression for f (x, y) to the following expression in new coordi-
nates x̃ and ỹ, that appears by a suitable rotation of the standard coordinate system:

f (x, y) = 11 · x2 + 4 · y2 − 24 · x · y− 20 · x + 40 · y− 60

= 20 · x̃2 − 5 · ỹ2 − 40 · x̃ + 20 · ỹ− 60

= f̃ (x̃, ỹ) .

(15-124)

Note again that the reduction in Example 15.60 results in the reduced quadratic
polynomial f̃ (x̃, ỹ) not containing any product terms of the form x̃ · ỹ. This
reduction technique and the output of the large work becomes somewhat more
clear when we consider quadratic polynomials in three variables.

Example 15.61 Reduction of a Quadratic Polynomial, Three Variables

In Example 15.34 we have diagonalized the matrix A that represents the quadratic form in
the following quadratic polynomial in three variables:

f (x, y, z) = 7 · x2 + 6 · y2 + 5 · z2 − 4 · x · y− 4 · y · z− 2 · x + 20 · y− 10 · z− 18 . (15-125)

This polynomial is reduced to the following quadratic polynomial in the new variables ob-
tained using the same directives as in Example 15.60:

f (x, y) = f̃ (x̃, ỹ, z̃)

= 9 · x̃2 + 6 · ỹ2 + 3 · z̃2 + 18 · x̃− 12 · ỹ + 6 · z̃− 18
(15-126)
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with the positive orthogonal substitution

Q =

 −2/3 −2/3 1/3
2/3 −1/3 2/3
−1/3 2/3 2/3

 . (15-127)

The substitution matrix Q can be factorized to a product of axis-rotation matrices like this:

Q = Rz(w) ·Ry(v) ·Rx(u) , (15-128)

where the rotation angles are respectively:

u =
π

4
, v = − arcsin

(
1
3

)
, and w = 3 · π

4
, (15-129)

By rotation of the coordinate system and by using the new coordinates x̃, ỹ, and z̃ we ob-
tain a reduction of the polynomial f (x, y, z) to the end that the polynomial f̃ (x̃, ỹ, z̃) does
not contain product terms while f (x, y, z) contains two product terms, with x · y and y · z,
respectively.
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15.11 Summary

The main result in this eNote is that symmetric (n × n)-matrices are precisely those
matrices that can be diagonalized by a special orthogonal change of basis matrix Q.
We have used this theorem for the reduction of quadratic polynomials in n variables –
though particularly for n = 2 and n = 3.

• A symmetric (n× n)-matrix A has precisely n real eigenvalues λ1, · · · , λn.

• In the vector space Rn a scalar product is introduced by extending the standard
scalar product of R2 and R3, and we refer to this scalar product when we write
(Rn, ·). If a = (a1, · · · , an) and b = (b1, · · · , bn) with respect to the standard basis
e in Rn, then

a · b =
n

∑
i

ai · bi . (15-130)

• The length, the norm, of a vector a is given by

|a| =
√

a · a =

√
n

∑
i=1

a2
i . (15-131)

• The Cauchy-Schwarz inequality is valid for all vectors a and b in (Rn, ·)

|a · b| ≤ | a | |b | , (15-132)

and the equality sign applies if and only if a and b are linearly dependent.

• The angle θ ∈ [0, π] between two proper vectors a and b in (Rn, ·) is determined
by

cos(θ) =
a · b
|a| · |b| . (15-133)

• Two proper vectors a and b in (Rn, ·) are orthogonal if a · b = 0.

• A matrix Q is orthogonal if the column vectors are pairwise orthogonal and each
has length 1 with respect to the scalar product introduced. This corresponds ex-
actly to

Q> ·Q = E (15-134)

or equivalently:
Q−1 = Q> . (15-135)
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• The spectral theorem: If A is symmetric, then a special orthogonal change of basis
matrix Q exists such that

A = Q ·Λ ·Q> , (15-136)

where Λ = diag(λ1, · · · , λn).

• Every special orthogonal matrix Q is change of basis matrix that rotates the coordinate-
system. It can for n = 3 be factorized in three axis-rotation matrices:

Q = Rz(w) ·Ry(v) ·Rx(u) , (15-137)

for suitable choices of rotation angles u, v, and w.

• For n = 3: By rotation of the coordinate-system, i.e. by use of a special orthogo-
nal change of basis matrix Q, the quadratic form PA(x, y, z) (which is a quadratic
polynomial without linear terms and without constant terms) can be expressed by
a quadratic form P̃Λ(x̃, ỹ, z̃) in the new coordinates x̃, ỹ, and z̃ such that

PA(x, y, z) = P̃Λ(x̃, ỹ, z̃) for all (x, y, z), (15-138)

and such that the reduced quadratic form P̃Λ(x̃, ỹ, z̃) does not contain any product
term of the type x̃ · ỹ, x̃ · z̃, or ỹ · z̃ :

P̃Λ(x̃, ỹ, z̃) = λ1 · x̃2 + λ2 · ỹ2 + λ3 · z̃2 , (15-139)

where λ1, λ2, and λ3 are the three real eigenvalues for A.
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