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eNote 13

Eigenvalues and Eigenvectors

This note introduces the concepts of eigenvalues and eigenvectors for linear maps in arbitrary
general vector spaces and then delves deeply into eigenvalues and eigenvectors of square
matrices. Therefore the note is based on knowledge about general vector spaces, see eNote 11, on
knowledge about algebra with matrices, see eNote 7 and eNote 8, and on knowledge about linear
maps see eNote 12.

Update: 7.10.21 David Brander.

13.1 The Eigenvalue Problem for Linear Maps

13.1.1 Introduction

In this eNote we consider linear maps of the type

f : V → V, (13-1)

that is, linear maps where the domain and the codomain are the same vector space. This
gives rise to a special phenomenon, that a vector can be equal to its image vector:

f (v) = v . (13-2)

Vectors of this type are called fixed points of the map f . More generally we are looking
for eigenvectors, that is vectors that are proportional to their image vectors. In this
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connection one talks about the eigenvalue problem: to find a scalar λ and a proper (i.e.
non-zero) vector v satisfying the vector equation:

f (v) = λv . (13-3)

If λ is a scalar and v a proper vector satisfying 13-3 the proportionality factor λ is called
an eigenvalue of f and v an eigenvector corresponding to λ. Let us, for example, take
a linear map f : G3 → G3, that is, a linear map of the set of space vectors into itself,
mapping three given vectors as shown in Figure 13.1.

f(c)

f(a)
f(b)

c

b

a

Figure 13.1: Three eigenvectors in space and their image vectors.

As hinted in Figure 13.1 f (a) = 2a . Therefore 2 is an eigenvalue of f with correspond-
ing eigenvector a . Furthermore f (b) = −b , so −1 is also an eigenvalue of f with
corresponding eigenvector b . And since finally f (c) = c , 1 is an eigenvalue of f with
corresponding eigenvector c . More specifically c is a fixed point for f .

To solve eigenvalue problems for linear maps is one of the most critical problems in
engineering applications of linear algebra. This is closely connected to the fact that a
linear map whose mapping matrix with respect to a given basis is a diagonal matrix is
particularly simple to comprehend and work with. And here the nice rule, that if one
chooses a basis consisting of eigenvectors for the map, then the mapping matrix auto-
matically becomes a diagonal matrix.

In the following example we illustrate these points using linear maps in the plane.
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Example 13.1 Eigenvalues and Eigenvectors in the Plane

The vector space of vectors in the plane has the symbol G2(R) . We consider a linear map

f : G2(R)→ G2(R) (13-4)

of the set of plane vectors into itself, that with respect to a given basis (a1, a2) has the follow-
ing diagonal matrix as its mapping matrix:

aFa =

[
2 0
0 3

]
. (13-5)

Since

a f (a1) =

[
2 0
0 3

][
1
0

]
=

[
2
0

]
= 2 ·

[
1
0

]
and

a f (a2) =

[
2 0
0 3

][
0
1

]
=

[
0
3

]
= 3 ·

[
0
1

]
we have that f (a1) = 2a1 and f (a2) = 3a2 . Both basis vectors are thus eigenvectors for f ,
because a1 corresponds to the eigenvalue 2 and a2 corresponds to the eigenvalue 3 . The
eigenvalues are the diagonal elements in aFa .

We now consider an arbitrary vector x = x1a1 + x2a2 and find its image vector:

a f (x) =
[

2 0
0 3

][
x1

x2

]
=

[
2x1

3x2

]
.

By the map the x1-coordinate is multiplied by the eigenvalue 2, while the x2-coordinate is
multiplied by the eigenvalue 3. Geometrically this means that through the map all of the
plane “is stretched” first by the factor 2 in the direction a1 and then by the factor 3 in the
direction a2 , see the effect on an arbitrarily chosen vector x in the figure A:

a2

a1

x

f(x)

O

Figure A: The vector x is stretched horizontally by a factor 2 and vertically by a factor 3.
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In Figure B we have chosen the standard basis (i, j) and illustrate how the linear map g that
has the mapping matrix

eGe =

[
2 0
0 3

]
,

maps the “blue house” into the “red house” by stretching all position vectors in the blue
house by the factor 2 in the horizontal direction and by the factor 3 in the vertical direction.
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Figure B: The blue house is stretched in the horizontal direction by the factor 2 and vertically
by the factor 3.

We now investigate another map h , the mapping matrix of which, with respect to the stan-
dard basis, is not a diagonal matrix:

eHe =

[
7/3 2/3
1/3 8/3

]
.

Here it is not possible to decide directly whether the map is composed of two stretchings in
two given directions. And the mapping of the blue house by h as shown in the figure below
does not give a clue directly:
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Figure C: House
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But it is actually also possible in the case of h to choose a basis consisting of two linearly
independent eigenvectors for h . Let b1 be given by the e-coordinates (2,−1) and b2 by the
e-coordinates (1, 1) . Then we find that

eh(b1) =

[
7/3 2/3
1/3 8/3

][
2
−1

]
=

[
4
−2

]
= 2 ·

[
2
−1

]
and

eh(b2) =

[
7/3 2/3
1/3 8/3

][
1
1

]
=

[
3
3

]
= 3 ·

[
1
1

]
.

In other words, h(b1) = 2b1 and h(b2) = 3b2 . We see that b1 and b2 are eigenvectors for
h , and when we choose (b1, b2) as basis, the mapping matrix for h with respect to this basis
takes the form:

bGb =

[
2 0
0 3

]
.

Surprisingly it thus shows that the mapping matrix for h also can be written in the form
(13-5). The map h is also composed of two stretchings with the factors 2 and 3. Only the
stretching directions are now determined by the eigenvectors b1 and b2 . This is more evident
if we map a new blue house whose principal lines are parallel to the b-basis vectors:
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Figure D: The blue house is stretched by the factor 2 and the factor 3, respectively, in the
directions of the eigenvectors

Thus we have illustrated: If you can find two linearly independent eigenvectors for a linear
map in the plane it is possible:

1. to write its mapping matrix in diagonal form by choosing the eigenvectors as basis

2. to describe the map as stretchings in the directions of the eigenvectors with the corre-
sponding eigenvectors as stretching factors.
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13.1.2 Eigenvalues and their Corresponding Eigenvectors

The eigenvalue problem for a linear map is briefly about answering the question: do any
proper vectors, each with its image vector proportional to the vector itself, exist. The
short answer to this is that this cannot be answered in general, it depends on the partic-
ular map. In the following we try to pinpoint what can actually be said generally about
the eigenvalue problem.

Definition 13.2 Eigenvalue and Eigenvector

Let f : V → V be a linear map of the vector space V into itself. If a proper vector
v ∈ V and a scalar λ exist such that

f (v) = λv , (13-6)

then the proportionality factor λ is called an eigenvalue of f , while v is called an
eigenvector corresponding to λ.

If, in Definition 13.2, it were not required to find a proper vector that satisfies
f (v) = λv , then every scalar λ would be an eigenvalue, since for any scalar λ

f (0) = λ 0 is valid. On the other hand, for a given eigenvalue, it is a matter
of convention whether or not to say that the zero vector is also a correspond-
ing eigenvector. Most commonly, the zero vector is not considered to be an
eigenvector.

The number 0 can be an eigenvalue. This is so if a proper vector v exists such
that f (v) = 0 , since we then have f (v) = 0v .

If a linear map f has one eigenvector v , then it has infinitely many eigenvectors. This
is a simple consequence of the following theorem.

Theorem 13.3 Eigenspace

If λ is an eigenvalue of a linear map f : V → V , denote by Eλ the set: Eλ := {v ∈
V | f (v) = λv)}. Then Eλ is a vector subspace of V.
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Proof

Let f : V → V be a linear map of the vector space V into itself, and assume that λ is an
eigenvalue of f . Obviously Eλ is not empty, since it contains the zero vector. We shall show
that the it satisfies the two stability requirements for subspaces, see Theorem 11.42. Let k be
an arbitrary scalar, and let u and v be two arbitrary elements of Eλ. Then the following is
valid :

f (u + v) = f (u) + f (v) = λu + λv = λ(u + v) .

Thus the vector sum u + v ∈ Eλ and thus we have shown that Eλ satisfies the stability re-
quirement with respect to addition. Furthermore the following is valid:

f (ku) = k f (u) = k(λu) = λ(ku) .

Thus we have shown stabilit with respect to multiplication by a scalar. Together we have
shown that Eλ is a subspace of the domain.

�

Theorem 13.3 yields the following definition:

Definition 13.4 Eigenvector Space

Let f : V → V be a linear map of the vector space V to itself, and let λ be an
eigenvalue of f .

By the eigenvector space (or in short the eigenspace) Eλ corresponding to λ we under-
stand the subspace:

Eλ = {v ∈ V | f (v) = λv } .

If Eλ is finite-dimensional, dim(Eλ) is called the geometric multiplicity of λ , denoted
gm(λ).

In the following example we consider a linear map that has two eigenvalues, both with
the geometric multiplicity 1 .
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Example 13.5 Eigenspace for Reflection

In the plane a straight line through the origin is drawn. By s we denote the linear map that
maps a vector v, drawn from the origin, in its reflection s(v) in m :

n

m

s(a)

s(b)

a

b

s(v)

v

O

The eigenvalue problem for the reflection in m .

Let a be an arbitrary proper vector that lies on m. Since

s(a) = a = 1 · a

1 is an eigenvalue of s . The eigenspace E1 is the set of vectors that lie on m .

We now draw a straight line n through the origin, perpendicular to m . Let b be an arbitrary
proper vector lying on n. Since

s(b) = −b = (−1) · b ,

−1 is an eigenvalue of s . The eigenspace E−1 is the set of vectors that lie on n .

That not all linear maps have eigenvalues and thus eigenvectors is evident from the
following example.
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Example 13.6

Let us investigate the eigenvalue problem for the linear map f : G2 → G2 that to every proper
vector v in the plane assigns its hat vector:

f (v) = v̂ .

Since a proper vector v never can be proportional (parallel) to its hat vector, then for any
scalar λ we have

v̂ 6= λv .

Therefore eigenvalues and eigenvectors for f do not exist.

From the following exercise we see that the dimension of an eigenspace can be greater
than 1.

Exercise 13.7

In space an ordinary (O, i, j, k)-coordinate system is given. All vectors are drawn from the
origin. The map p projects vectors down onto the (X, Y)-plane in space:

Y

Z

X

p(v)

v
k

ji

O

Eigenvalue problem for the projection down onto the (X, Y)-plane.

It is shown in Exercise 12.28 that p is linear. Determine all eigenvalues and the eigenspaces
that correspond to the eigenvalues, solely by mental calculation (ponder).
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Example 13.8 The Eigenvalue Problem for Differentiation

We consider the linear map f : C∞(R)→ C∞ given by

f (x(t)) = x′(t) .

Let λ be an arbitrary scalar. Since
f (eλt) = λ eλt ,

λ is an eigenvalue of f and eλt is an eigenvector that corresponds to λ .

Since all solutions to the differential equation

x′(t) = λx(t)

is given by k · eλt where k is an arbitrary real number, the eigenspace corresponding to λ is
determined by

Eλ =
{

k · eλt k ∈ R
}

.

13.1.3 Theoretical Points

The following corollary gives an important result for linear maps of a vector space into
itself. It is valid even if the vector space considered is of infinite dimension.

Corollary 13.9

Let f : V → V be a linear map of a vector space V into itself, and assume

1. that f has a series of eigenvalues with corresponding eigenspaces,

2. that some of the eigenspaces are chosen, and within each of the chosen
eigenspaces some linearly independent vectors are chosen,

3. and that all the so chosen vectors are consolidated in a single set of vectors v .

Then v is a linearly independent set of vectors.
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Proof

Let f : V → V be a linear map, and let v be a set of vectors that are put together according to
points 1. to 3. in Corollary 13.9. We shall prove that v is linearly independent. The flow of
the proof is that we assume the opposite, that is, v is linearly dependent, and show that this
leads to a contradiction.

First we delete vectors from v to get a basis for span{v}. There must be at least one vector in
v that does not correspond to the basis. We choose one of these, let us call it x. Now we write
x as a linear combination of the basis vectors, in doing so we leave out the trivial terms, i.e.
those with the coefficient 0:

x = k1v1 + · · ·+ kmvm (13-7)

We term the eigenvalue that corresponds to x λ, and the eigenvalues corresponding to vi λi.
From (13-7) we can obtain an expression for λx in two different ways, partly by multiplying
(13-7) by λ, partly by finding the image by f of the right and left hand side in (13-7):

λx = λk1v1 + · · ·+ λkmvm

λx = λ1k1v1 + · · ·+ λmkmvm

Subtracting the lower from the upper equation yields:

0 = k1(λ− λ1)v1 + · · ·+ km(λ− λm)vm . (13-8)

If all the coefficients to the vectors on the right hand side of (13-8) are equal to zero, then
λ = λi for all i = 1, 2, . . . , m. But then x and all the basis vectors vi that are chosen form the
same eigenspace, and therefore they should collectively be linearly independent, this is how
they are chosen. This contradicts that x is a linear combination of the basis vectors.

Therefore at least one of the coefficients in (13-8) must be different from 0. But then the zero
vector is written as a proper linear combination of the basis vectors. This contradicts the
requirement that a basis is linearly independent.

Conclusion: the assumption that v is a linearly independent set of vectors, necessarily leads
to a contradiction. Therefore v is linearly independent.

�

Example 13.10 The Linear Independence of Eigenvectors

A linear map f : V → V has three eigenvalues λ1, λ2 and λ3 that have the geometric multi-
plicities 2, 1 and 3 , respectively. The set of vectors (a1, a2) is a basis for Eλ1 , (b) is a basis for
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Eλ2 , and (c1, c2, c3) is a basis for Eλ3 . Then it follows from corollary 13.9 that any selection of
the six basis vectors is a linearly independent set of vectors.

Corollary 13.9 is useful because it leads directly to the following important results:

Theorem 13.11 General Properties

Let V be a vector space with dim(V) = n , and let f : V → V be a linear map of V
into itself. Then:

1. Proper eigenvectors that correspond to different eigenvalues for f , are linearly
independent.

2. f can at the most have n different eigenvalues.

3. If f has n different eigenvalues, then a basis for V exists consisting of eigen-
vectors for f .

4. The sum of the geometric multiplicities of eigenvalues for f can at the most be
n .

5. If and only if the sum of the geometric multiplicities of the eigenvalues for f is
equal to n, a basis for V exists consisting of eigenvectors for f .

Exercise 13.12

The first point in 13.11 is a simple special case of Corollary 13.9 and therefore follows directly
from the corollary. The second point can be proved like this:

Assume that a linear map has k different eigenvalues. We choose a proper vector from each of the k
eigenspaces. The set of the k chosen vectors is then (in accordance with the corollary 13.9) linearly
independent, and k must therefore be less than or equal to the dimension of the vector space (see
Corollary 11.21).

Similarly, show how the last three points in Theorem 13.11 follow from Corollary 13.9.

Motivated by Theorem 13.11 we introduce the concept eigenbasis:
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Definition 13.13 Eigenvector basis

Let f : V → V be a linear map of a finite-dimensional vector space V into itself.

By an eigenvector basis, or in short eigenbasis, for V with respect to f we understand a
basis consisting of eigenvectors for f .

Now we can present this subsection’s main result:

Theorem 13.14 Main Theorem

Let f : V → V be a linear map of an n-dimensional vector space V into itself, and
let v = (v1, . . . vn) be a basis for V . Then:

1. The mapping matrix vFv for f with respect to v is a diagonal matrix if and only if
v is an eigenbasis for V with respect to f .

2. Assume that v is an eigenbasis for V with respect to f . Let Λ denote the diagonal
matrix that is the mapping matrix for f with respect to v . The order of the diago-
nal elements in Λ is then determined from the basis like this: The basis vector vi
corresponds to the eigenvalue λi that is in the i’th column in Λ .

The proof of this theorem can be found in eNote 14 (see Theorem 14.7).
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Example 13.15 Diagonal Matrix for Reflection

Let us again consider the situation in example 13.5, where we considered the map s that
reflects vectors drawn from the origin in the line m :

n

m

s(a)

s(b)

a

b

s(v)

v

O

Reflection about m.

We found that a is an eigenvector that corresponds to the eigenvalue 1 , and that b is an
eigenvector that corresponds to the eigenvalue −1 . Since the plane has the dimension 2
it follows from Theorem 13.14 that if we choose the basis (a, b) , then f has the following
mapping matrix with respect to this basis:[

1 0
0 −1

]
.

Example 13.16 Linear Maps without Eigenvalues

In the example 13.6 we found that the map, which maps a vector in the plane onto its hat
vector, has no eigenvalues. Therefore there is no eigenbasis for the map, and therefore it
cannot be described by a diagonal matrix for this map.

Example 13.17 Diagonalisation of a Complex Map

Let f : C2 → C2 be a linear map that satisfies

f (z1, z2) = (−z2, z1) .
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Since:
f (i, 1) = (−1, i) = i (i, 1) and f (−i, 1) = (−1,−i) = (−i)(−i, 1) ,

it is seen that i is an eigenvalue of f with a corresponding eigenvector (i, 1), and that −i is an
eigenvalue of f with a corresponding eigenvector (−i, 1) .

Since (i, 1) and (−i, 1) are linearly independent,
(
(i, 1), (−i, 1)

)
is an eigenbasis for C2 with

respect to f . The mapping matrix for f with respect to this basis is in accordance with Theo-
rem 13.14 [

i 0
0 −i

]
.

Exercise 13.18

Consider once more the situation in Example 13.7. Choose two different eigenbases (bases
consisting of eigenvectors for p ), and determine in each of the two cases the diagonal matrix
that will become the mapping matrix for p with respect to the chosen basis.

13.2 The Eigenvalue Problem for Square Matrices

When a linear map f : V → V maps an n-dimensional vector space V into the vec-
tor space itself the mapping matrix for f with respect to the arbitrarily chosen basis a
becomes a square matrix. The eigenvalue problem f (v) = λv is the equivalent of the
matrix equation:

aFa·av = λ · av . (13-9)

Thus we can formulate an eigenvalue problem for square matrices generally, that is
without necessarily having to think about a square matrix as a mapping matrix. We will
standardize the method, when eigenvalues and eigenvectors for square matrices are to
be determined. At the same time, due to (13-9), we get methods for finding eigenvalues
and eigenvectors for all linear maps of a vector space into itself, that can be described
by mapping matrices.

First we define what is to be understood by the eigenvalue problem for a square matrix.
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Definition 13.19 The Eigenvalue Problem for Matrices

Solving the eigenvalue problem for a square real n × n-matrix A means to find a
scalar λ and a proper vector v = (v1, ... , vn) satisfying the equation:

A v = λv . (13-10)

If this equation is satisfied for a pair af λ and v 6= 0, λ is termed an eigenvalue of A
and v an eigenvector of A corresponding to λ.

Example 13.20 The Eigenvalue Problem for a Square Matrix

We wish to investigate whether v1 = (2, 3), v2 = (4, 4) and v3 = (2,−1) are eigenvectors for
A given by

A =

[
4 −2
3 −1

]
(13-11)

For this we write the eigenvalue problem, as stated in Definition 13.19.

Av1 =

[
4 −2
3 −1

][
2
3

]
=

[
2
3

]
= 1 · v1

Av2 =

[
4 −2
3 −1

][
4
4

]
=

[
8
8

]
= 2 · v2

Av3 =

[
4 −2
3 −1

][
2
−1

]
=

[
10
7

]
6= λ · v3 .

(13-12)

From this we see that v1 and v2 are eigenvectors for A. v1 corresponding to the eigenvalue 1,
and v2 corresponding to the eigenvalue 2.

Furthermore we see that v3 is not an eigenvector for A.

Example 13.21 The Eigenvalue Problem for a Square Matrix

Given the matrix

A =

[
2 −2
−2 2

]
.

Since [
2 −2
−2 2

][
1
1

]
=

[
0
0

]
= 0

[
1
1

]
,

0 is an eigenvalue of A and (1, 1) an eigenvector for A corresponding to the eigenvalue 0.
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Example 13.22 The Eigenvalue Problem for a Square Matrix

Given the matrix

A =

[
0 1
−1 0

]
.

Since [
0 1
−1 0

][
−i

1

]
=

[
1
i

]
= i
[
−i

1

]
,

i is a complex eigenvalue of A and (−i, 1) is a complex eigenvector for A corresponding to
the eigenvalue i.

For the use in the following investigations we make some important comments to Defi-
nition 13.19 .

First we note that even if the square matrix A in Definition 13.19 is real, one is often
interested not only in the real solutions to (13-10), but more generally complex solutions.
In other words we seek a scalar λ ∈ C and a vector v ∈ Cn , satisfying (13-10).

Therefore it can be convenient to regard the left-hand side of (13-10) as a map f : Cn →
Cn given by:

f (v) = A v .

This map is linear, viz. let u ∈ Cn , v ∈ Cn and k ∈ C ., then according to the usual
arithmetic rules for matrices

1. f (u + v) = A (u + v) = A u + A v
2. f (k u) = A(k u) = k(A u)

By this the linearity is established. Since the eigenvalue problem f (v) = λv in this case
is identical to the eigenvalue problem Av = λv , we can conclude that results obtained
in subsection 9.1 for the eigenvalue problem in general, can be transferred directly to
the eigenvalue problem for matrices. Thus let us immediately characterize the set of
eigenvectors that correspond to a given eigenvalue of a square, real matrix, compare
with Theorem 13.3.

Theorem 13.23 Subspaces of Eigenvectors

Let λ be a real or complex eigenvalue of a real n × n-matrix A. Then the set of
complex eigenvectors for A corresponding to λ, is a subspace in Cn.
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If one is only interested in real solutions to the eigenvalue problem for real square ma-
trices, one can alternatively see the left hand side of (13-10) as a real map f : Rn → Rn

given by:
f (v) = A v .

Of course, this map is linear, too. We get the following version of Theorem 13.23:

Theorem 13.24 Subspaces of Eigenvectors

Let λ be a real eigenvalue of a real n× n-matrix A. Then the set of real eigenvectors
for A corresponding to λ, is a subspace in Rn.

In the light of Theorem 13.23 and Theorem 13.24 we now introduce the concept eigen-
vector space, compare with Definition 13.4.

Definition 13.25 The Eigenvector Space

Let A be a square, real matrix, and let λ be an eigenvalue of A .

The subspace of all the eigenvectors that correspond to λ is termed the eigenvector
space (or in short the eigenspace) corresponding to λ and is termed Eλ .

Now we have sketched the structural framework for the eigenvalue problem for square
matrices, and we continue in the following two subsections by investigating in an ele-
mentary way, how one can begin to find eigenvalues and eigenvectors for square matri-
ces.

13.2.1 To Find the Eigenvalues for a Square Matrix

We wish to determine the eigenvalues that correspond to a real n × n matrix A . The
starting point is the equation

Av = λv , (13-13)
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First we put λv onto the left hand of the equality sign, and then v “is placed outside a
pair of brackets”. This is possible because v = E v where E is the identity matrix:

Av = λv ⇔ Av− λ(Ev) = Av− (λE)v = 0 ⇔ (A− λE)v = 0 . (13-14)

The last equation in (13-14) corresponds to a homogeneous system of linear equations
consisting of n equations in the n unknowns v1, ..., vn, that are the elements in v =
(v1, ..., vn) . However, it is not possible to solve the system of equations directly, pre-
cisely because we do not know λ. We have to continue the work with the coefficient
matrix of the system of equations. We give this matrix a special symbol:

KA(λ) = (A− λE)

and is called the characteristic matrix of A.

Since it is a homogeneous system of linear equations that we have to solve we have two
possibilities for the structure of the solution. Either the characteristic matrix is invertible,
and the the only solution is v = 0 . Or the matrix is singular, and then infinitely many
solutions v exist. But since Definition 13.19 requires that v must be a proper vector, that
is a vector different from the zero vector, the characteristic matrix must be singular. To
investigate whether this is true, we take the determinant of the square matrix. This is
zero exactly when the matrix is singular:

det(A− λE) = 0 . (13-15)

Note that the left hand side in (13-15) is a polynomial in the variable λ. The polynomial
is given a special symbol:

KA(λ) = det(A− λE) = det(KA(λ))

and is termed the characteristic polynomial of A .

The equation that results when the characteristic polynomial is set equal to zero

KA(λ) = det(A− λE) = det(KA(λ)) = 0

is termed the characteristic equation of A.

By the use of the method for calculating the determinant we see that the characteristic
polynomial is always an n’th degree polynomial. See also the following examples. The
main point is that the roots in the characteristic polynomial (solutions to the character
equation) are the eigenvalues of the matrix, because the eigenvalues precisely satisfy
that the characteristic matrix is singular.
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It is also common to define the characteristic matrix as λE−A, since the homo-
geneous equation for this matrix has the same solutions, and the zeros of the
corresponding characteristic polynomial det(λE− A) = 0 are also the same.
But note that det(λE−A) = (−1)n det(A− λE).

Example 13.26 Eigenvalues for 2× 2 Matrices

Given two matrices A and B:

A =

[
4 −2
3 −1

]
and B =

[
−1 4
−2 3

]
. (13-16)

We wish to determine the eigenvalues for A and B.

First we consider A. Its characteristic matrix reads:

KA(λ) = A− λE =

[
4 −2
3 −1

]
−
[

λ 0
0 λ

]
=

[
4− λ −2

3 −1− λ

]
. (13-17)

Now we determine the characteristic polynomial:

KA(λ) = det(KA(λ)) = det
([

4− λ −2
3 −1− λ

])
= (4− λ)(−1− λ)− (−2) · 3 = λ2 − 3λ + 2 .

(13-18)

The polynomial as expected has the degree 2 . The characteristic equation can be written and
the solutions determined:

KA(λ) = 0 ⇔ λ2 − 3λ + 2 = 0 ⇔ λ = 1 or λ = 2 . (13-19)

Thus A has two eigenvalues: λ1 = 1 and λ2 = 2 .

The same technique is used for the determination of possible eigenvalues of B.

KB(λ) = B− λE =

[
−1 4
−2 3

]
−
[

λ 0
0 λ

]
=

[
−1− λ 4
−2 3− λ

]
KB(λ) = det(KB(λ)) = det

([
−1− λ 4
−2 3− λ

])
= (−1− λ)(3− λ)− 4 · (−2) = λ2 − 2λ + 5 .

(13-20)

In this case there are no real solutions to KB(λ) = 0, because the discriminant d = (−2)2− 4 ·
1 · 5 = −16 < 0, and therefore B has no real eigenvalues. But it has two complex eigenvalues.
We use the complex “toolbox”: The discriminant can be rewritten as d = (4i)2, which gives
the two complex solutions

λ =
2± 4i

2
⇔ λ = 1 + 2i and λ̄ = 1− 2i (13-21)

Thus B has two complex eigenvalues: λ1 = 1 + 2i and λ2 = 1− 2i .
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In the following theorem the conclusions of this subsection are summarized.

Theorem 13.27 The Characteristic Polynomial

For the square real n× n-matrix A consider

1. The characteristic matrix KA(λ) = A− λE .

2. The characteristic polynomial KA(λ) = det(KA(λ)) = det(A− λE) .

3. The characteristic equation KA(λ) = 0 .

Then:

1. The characteristic polynomial is an n’th degree polynomial with the variable λ ,
and similarly the characteristic equation is an n’th degree equation with the un-
known λ .

2. The roots of the characteristic polynomial (the solutions to the characteristic equa-
tion) are all the eigenvalues of A .

13.2.2 To Find the Eigenvectors of a Square Matrix

After the eigenvalues of a real n× n matrix A are determined, it is possible to determine
the corresponding eigenvectors. The procedure starts with the equation

(A− λE)v = 0 , (13-22)

that was achieved in (13-14). Since the eigenvalues are now known, the homogeneous
system of linear equations corresponding to (13-22) can be solved with respect to the n
unknowns v1, ..., vn that are the elements in v = (v1, ..., vn) . We just have to substitute
the eigenvalues one after one. As mentioned above, the characteristic matrix is singular
when the substituted λ is an eigenvalue. Therefore infinitely many solutions to the
system of equations exist. Finding these corresponds to finding all eigenvectors v that
correspond to λ .

In the following method we summarize the problem of determining eigenvalues and
the corresponding eigenvectors of a square matrix.
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Method 13.28 Determination of Eigenvectors

All (real or complex) eigenvalues λ for the square matrix A are found as the solutions
to the characteristic equation of A:

KA(λ) = 0 ⇔ det(A− λE) = 0 . (13-23)

Then the eigenvectors v corresponding to each of the eigenvalues λ can be deter-
mined. They are the solutions to the following system of linear equations

(A− λE)v = 0 , (13-24)

when the eigenvalue λ is substituted. E is the identity matrix.

Method 13.28 is unfolded in the following three examples that also show a way of char-
acterizing the set of eigenvectors corresponding to a given eigenvalue, in the light of
Theorem 13.23 and Theorem 13.24.

Example 13.29 Eigenvectors Belonging to Given Eigenvalues

Given the square matrix

A =

[
2 1
1 2

]
. (13-25)

We wish to determine eigenvalues and eigenvectors to A and use method 13.28. First the
characteristic matrix is found:

KA(λ) = A− λE =

[
2 1
1 2

]
−
[

λ 0
0 λ

]
=

[
2− λ 1

1 2− λ

]
(13-26)

Then the characteristic polynomial is formed:

KA(λ) = det(A− λE)

= det
([

2− λ 1
1 2− λ

])
= (2− λ)(2− λ)− 1 · 1 = λ2 − 4λ + 3 .

(13-27)

The characteristic equation that is λ2 − 4λ + 3 = 0, has the solutions λ1 = 1 and λ2 = 3,
which are all the real eigenvalues of A.

In order to determine the eigenvectors corresponding to λ1, it is substituted into (A−λE)v =

0, and then we solve the system of linear equations with the augmented matrix:

T = [A− λ1E | 0 ] =
[

2− 1 1 0
1 2− 1 0

]
. (13-28)
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By Gauss-Jordan elimination we get

rref(T) =
[

1 1 0
0 0 0

]
(13-29)

Thus there are infinitely many solutions v = (v1, v2), since there is only one non-trivial equa-
tion: v1 + v2 = 0. If we are only looking for one proper eigenvector corresponding to the
eigenvalue λ1, we can put v2 equal to 1, and we get the eigenvector v1 = (−1, 1) . All real
eigenvectors corresponding to λ1 can then be written as

v = t ·
[
−1

1

]
, t ∈ R . (13-30)

This is a one-dimensional subspace in R2, viz. the eigenspace that corresponds to 1 that can
also be written like this:

E1 = span{(−1, 1)} . (13-31)

Now λ2 is substituted in (A − λE)v = 0, and we then solve the corresponding system of
linear equations that has the augmented matrix

T = [A− λ2E | 0 ] =
[

2− 3 1 0
1 2− 3 0

]
. (13-32)

By Gauss-Jordan elimination we get

rref(T) =
[

1 −1 0
0 0 0

]
. (13-33)

From this we see that v2 = (1, 1) is an eigenvector corresponding to the eigenvalue λ2. All
real eigenvectors corresponding to λ2 can be written as

v = t ·
[

1
1

]
, t ∈ R . (13-34)

This is a one-dimensional subspace in R2 that can also be written as:

E3 = span{(1, 1)} . (13-35)

We will now check our understanding: When v1 = (−1, 1) is mapped by A, will the image
vector only be a scaling (change of length) of v1?

Av1 =

[
2 1
1 2

][
−1

1

]
=

[
−1

1

]
= v1 . (13-36)

It is true! It is also obvious that the eigenvalue is 1 .

Now we check v2:

Av2 =

[
2 1
1 2

][
1
1

]
=

[
3
3

]
= 3 · v2 . (13-37)

v2 is also as expected an eigenvector and the eigenvalue is 3.
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Example 13.30 Complex Eigenvalues and Eigenvectors

In Example 13.26 a matrix B is given

B =

[
−1 4
−2 3

]
(13-38)

that has no real eigenvalues. But we found two complex eigenvalues, λ1 = 1 + 2i and λ2 =

1− 2i .

We substitute λ1 in (B − λE)v = 0 and then we solve the corresponding system of linear
equations that has the augmented matrix

T = [B− λ1E | 0 ] =
[
−1− (1 + 2i) 4 0

−2 3− (1 + 2i) 0

]
(13-39)

By Gauss-Jordan elimination we get

rref(T) =
[

1 −1 + i 0
0 0 0

]
(13-40)

This corresponds to one non-trivial equation v1 + (−1 + i)v2 = 0, and if we put v2 = s, we
see that all the complex eigenvectors corresponding to λ1 are given by

v = s ·
[

1− i
1

]
, s ∈ C . (13-41)

This is a one-dimensional subspace in C2, viz. the eigenspace corresponding to the eigen-
value 1 + 2i which we also can state like this:

E1+2i = span{(1− i, 1)} . (13-42)

Similarly all complex solutions corresponding to λ2 are given by

v = s ·
[

1 + i
1

]
, s ∈ C . (13-43)

This is a one-dimensional subspace in C2 which we also can state like this:

E1−2i = span{(1 + i, 1)} . (13-44)
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In the following example we find eigenvalues and corresponding eigenspaces for a 3×
3-matrix. It turns out that in this case to one of the eigenvalues corresponds a two-
dimensional eigenspace.

Example 13.31 Eigenvalue with Multiplicity 2

Given the matrix A:

A =

 6 3 12
4 −5 4
−4 −1 −10

 (13-45)

First we wish to determine the eigenvalues of A and use Method 13.28.

det

 6− λ 3 12
4 −5− λ 4
−4 −1 −10− λ

 = −λ3 − 9λ2 + 108 = −(λ− 3)(λ + 6)2 = 0 (13-46)

From the last factorization it is seen that A has two different eigenvalues. The eigenvalue
λ1 = −6 is a double root in the characteristic equation, while the eigenvalue λ2 = 3 is a
single root.

Now we determine the eigenspace corresponding to λ1 = −6, see Theorem 13.23: 6− (−6) 3 12 0
4 −5− (−6) 4 0
−4 −1 −10− (−6) 0

→
 12 3 12 0

4 1 4 0
−4 −1 −4 0

→
 4 1 4 0

0 0 0 0
0 0 0 0


(13-47)

Here is only one nontrivial equation: 4x1 + x2 + 4x3 = 0. If we put x1 and x3 equal to the two
free parameters s and t all real eigenvectors corresponding to the eigenvalue −6 are given
by:

x =

 x1

x2

x3

= s ·

 1
−4

0

+ t ·

 0
−4

1

 , s, t ∈ R . (13-48)

This is a two-dimensional subspace in R3 which can also be stated like this:

E−6 = span{(1,−4, 0), (0,−4, 1)} . (13-49)

It is thus possible to find two linearly independent eigenvectors corresponding to λ1. What
about the number of linearly independent eigenvectors for λ2 = 3? 6− 3 3 12 0

4 −5− 3 4 0
−4 −1 −10− 3 0

→
 3 3 12 0

4 −8 4 0
−4 −1 −13 0

→
 1 1 4 0

0 −3 −3 0
0 3 3 0

→
 1 1 4 0

0 1 1 0
0 0 0 0


(13-50)
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Here are two non-trivial equations: x1 + x2 + 4x3 = 0 and x2 + x3 = 0. If we put x3 = s equal
to the free parameter, then all real eigenvectors corresponding to the eigenvalue 3 are given
by

x =

 x1

x2

x3

= s ·

−3
−1

1

 , s ∈ R . (13-51)

This is a one-dimensional subspace in R3 that can also be stated like this:

E3 = span{(−3,−1, 1)} . (13-52)

Thus it is only possible to find one linearly independent eigenvector corresponding to λ2.

Exercise 13.32

Given the square matrix

A =

 5 −4 4
0 −1 6
0 1 4

 . (13-53)

1. Determine all eigenvalues of A.

2. Determine for each of the eigenvalues the corresponding eigenspace.

3. State at least 3 eigenvectors (not necessarily linearly independent) corresponding to
each eigenvalue.

13.2.3 Algebraic and Geometric Multiplicity

As is evident from Example 13.31 it is important to pay attention to whether an eigen-
value is a single root or a multiple root of the characteristic equation of a square real
matrix and to the dimension of the corresponding eigenspace. In this subsection we
investigate the relation between the two phenomena. This gives rise to the following
definitions.
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Definition 13.33 Algebraic and Geometric Multiplicity

Let A be a square, real matrix, and let λ be an eigenvalue of A .

1. λ is said to have the algebraic multiplicity n when λ is a n-double root in the
characteristic equation of the square matrix A. This is is termed am(λ) = n.

2. λ is said to have the geometric multiplicity m when the dimension of the eigen-
vector space corresponding to λ is m. This is termed gm(λ) = m. In other words:
dim(Eλ) = gm(λ) .

We do not always have am(λ) = gm(λ) . This is dealt with in Theorem 13.34.

The following theorem has some important properties concerning algebraic and geo-
metric multiplicity of eigenvalues of square matrices, cf. Theorem 13.11.

Theorem 13.34 Properties of Multiplicities

Given a real n× n-matrix A .

1. A has at the most n different real eigenvalues, and also the sum of algebraic
multiplicities of the real eigenvalues is at the most n .

2. A has at the most n different complex eigenvalues, but the sum of the algebraic
multiplicities of the complex eigenvalues is equal to n .

3. If λ is a real or complex eigenvalue of A, then:

1 ≤ gm(λ) ≤ am(λ) ≤ n (13-54)

That is, the geometric multiplicity of an eigenvalue will at the least be equal to
1, it will be less than or equal to the algebraic multiplicity of the eigenvalue,
which in turn will be less than or equal to the number of rows and columns in
A.
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Exercise 13.35

Check that all three points in Theorem 13.34 are valid for the eigenvalues and eigenvectors
in example 13.31.

Let us comment upon 13.34:

Points 1 and 2 follow directly from the theory of polynomials. The characteristic poly-
nomial for a real n× n-matrix A is an n’th degree polynomial, and it has at the most n
different roots, counting both real and complex ones. Furthermore the sum of the mul-
tiplicities of the real roots is at the most n , whereas the sum of the multiplicities to the
complex roots is equal to n .

We have previously shown that for every linear map of an n-dimensional vector space
into itself the sum of the geometric multiplicities of the eigenvalues for f can at the
most be n , see Theorem 13.11. Note that this can be deduced directly from the state-
ments about multiplicities in Theorem 13.34.

As something new and interesting it is postulated in point 3 that the geometric multi-
plicity of a single eigenvalue can be less than the algebraic multiplicity. This is demon-
strated in the following summarizing Example 13.36. Furthermore the geometric mul-
tiplicity of a single eigenvalue cannot be greater than the algebraic one. The proof of
point 3 in Theorem 13.34 is left out.

Example 13.36 Geometric Multiplicity Less than Algebraic Multiplicity

Given the matrix

A =

−9 10 0
−3 1 5

1 −4 6

 (13-55)

The eigenvalues of A are determined:

det

−9− λ 10 0
−3 1− λ 5
1 −4 6− λ

 = −λ3 − 2λ2 + 7λ− 4 = −(λ + 4)(λ− 1)2 = 0 . (13-56)

From the factorization in front of the last equality sign we get that A has two different eigen-
values: λ1 = −4 and λ2 = 1. Moreover am(−4) = 1 and am(1) = 2, as can be seen from the
factorization.
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The eigenspace corresponding to λ1 = −4 is determined by solving (A− λ1E)v = 0:−9− (−4) 10 0 0
−3 1− (−4) 5 0
1 −4 6− (−4) 0

→
 1 −2 0 0

0 −1 5 0
0 −2 10 0

→
 1 −2 0 0

0 1 −5 0
0 0 0 0


(13-57)

There are two non-trivial equations: v1 − 2v2 = 0 and v2 − 5v3 = 0. If we put v3 equal to the
free parameter we see that all real eigenvectors corresponding to λ1 can be stated as

E−4 =
{

s · (10, 5, 1) s ∈ R
}
= span{(10, 5, 1)} . (13-58)

We have that gm(−4) = dim(E−4) = 1, and that an eigenvector to λ1 is v1 = (10, 5, 1). It is
seen that gm(−4) = am(−4).

Similarly for λ2 = 1: −9− 1 10 0 0
−3 1− 1 5 0
1 −4 6− 1 0

→
 1 −1 0 0

0 −3 5 0
0 −3 5 0

→
 1 −1 0 0

0 3 −5 0
0 0 0 0


(13-59)

Again we have two non-trivial equations: v1 − v2 = 0 and 3v2 − 5v3 = 0. If we put v3 = 3s
we see that all to λ2 corresponding real eigenvectors can be stated as

E1 =
{

s · (5, 5, 3) s ∈ R
}
= span{(5, 5, 3)} . (13-60)

This gives the following results: gm(1) = dim(E1) = 1 and that an eigenvector to λ2 = λ3 is
v2 = (5, 5, 3). Furthermore it is seen that gm(1) < am(1).

13.2.4 More About the Complex Problem

We will use the matrix

B =

[
−1 4
−2 3

]
. (13-61)
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From Example 13.30 in order to make more precise some special phenomena for square,
real matrices when their eigenvalue problems are studied in a complex framework.

We found that B has the eigenvalues, λ1 = 1 + 2i and λ2 = 1 − 2i . We see that the
eigenvalues are conjugate numbers. Another remarkable thing in Example 13.30 is that
where

v =

[
1− i

1

]
is an eigenvector corresponding to λ1 = 1 + 2i , then the conjugate vector

v =

[
1 + i

1

]
is an eigenvector for λ2 = 1− 2i . Both are examples of general rules:

Theorem 13.37 Conjugate Eigenvalues and Eigenvectors

For a square, real matrix A we have:

1. If λ is a complex eigenvalue of A in rectangular form λ = a + ib , then λ =
a− ib is also an eigenvalue of A .

2. If v is an eigenvector for A coresponding to the complex eigenvalue λ, then
the conjugate vector v is an eigenvector for A corresponding to the conjugate
eigenvalue λ .

Proof

The first part of Theorem 13.37 follows from the theory of polynomials. The characteristic
polynomial of a square, real matrix is a polynomial with real coefficients. The roots of such a
polynomial come in conjugate pairs.

�

By the trace of a square matrix we understand the sum of the diagonal elements. The
trace of B is thus −1 + 3 = 2 . Now notice that the sum of the eigenvalues of B is
(1− i) + (1 + i) = 2 , that is equal to the trace of B . This is also a general phenomenon,
which we state without proof:
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Theorem 13.38 The Trace

For a square, real matrix A, the trace A, i.e. the sum of the diagonal elements in
A, is equal to the sum of all (real and/or complex) eigenvalues of A , where every
eigenvalue is counted in the sum the number of times corresponding to the algebraic
multiplicity of the eigenvalue.

Exercise 13.39

In Example 13.31 we found that the characteristic polynomial for the matrix

A =

 6 3 12
4 −5 4
−4 −1 −10


has the double root −6 and the single root 3 . Prove that Theorem 13.38 is valid in this case.
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