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eNote 11

General Vector Spaces

In this eNote a general theory is presented for all mathematical sets where addition and
multiplication by a scalar are defined and which satisfy the same arithmetic rules as geometric
vectors in the plane and in 3-space. Using the concepts of a basis and coordinates, it is shown
how one can simplify and standardize the solution of problems that are common to all these sets,
which are called vector spaces. Knowledge of eNote 10 about geometric vectors is an advantage
as is knowledge about the solution sets for systems of linear equations, see eNote 6. Finally,
elementary matrix algebra and a couple of important results about determinants are required
(see eNotes 7 and 8).

Updated: 4.10.21 David Brander

11.1 Generalization of the Concept of a Vector

The vector concept originates in the geometry of the plane and space where it denotes a
pair consisting of a length and a direction. Vectors can be represented by a line segment
with orientation (an arrow) following which it is possible to define two geometric op-
erations: addition of vectors and multiplication of vectors by numbers (scalar). For the use
in more complicated arithmetic operations one proves eight arithmetic rules concerning
the two arithmetic operations.

In many other sets of mathematical objects one has a need for defining addition of the
objects and multiplication of an object by a scalar. The number spaces Rn and Cn and
the set of matrices Rm×n are good examples, see eNote 5 and eNote 6, respectively. The
remarkable thing is, that the arithmetic rules for addition and multiplication by a scalar,
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that are possible to prove within each of these sets, are the same as the arithmetic rules
for geometric vectors in the plane and in space! Therefore one says: Let us make a theory
that applies to all the sets where addition and multiplication by a scalar can be defined
and where all the eight arithmetic rules known from geometry are valid. By this one
carries out a generalization of the concept of geometric vectors, and every set that obeys
the conditions of the theory is therefore called a vector space.

In eNote 10 about geometric vectors it is demonstrated how one can introduce a basis
for the vectors following which the vectors are determined by their coordinates with re-
spect to this basis. The advantage of this is that one can replace the geometric vector
calculation by calculation with the coordinates for the vector. It turns out that it is also
possible to transfer the concepts of basis and coordinates to many other sets of mathe-
matical objects that have addition and multiplication by a scalar.

In the following, when we investigate vector spaces in the abstract sense, it means that
we look at which concepts, theorems and methods follow from the common arithmetic
rules, as we ignore the concrete meaning of addition and multiplication by a scalar has
in the sets of concrete objects where they are introduced. By this one obtains general
methods for every set of the kind described above. The application in any particular vec-
tor space then calls for interpretation in the context of the results obtained. The approach
is called the axiomatic method. Concerning all this we now give the abstract definition of
vector spaces.
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Definition 11.1 Vector Spaces

Let L denote R or C , and let V be a set of mathematical elements where there is
defined two arithmetic operations:

I. Addition that from two elements a and b in V forms the sum a + b that also
belongs to V.

II. Multiplication by a scalar that from any a ∈ V and any scalar k ∈ L forms a
product ka or ak that also belongs to V.

V is called a vector space and the elements of V vectors if the following eight
arithmetic rules are valid:
1. a + b = b + a Addition is commutative
2. (a + b) + c = a + (b + c) Addition is associative
3. a + 0 = a In V there exists 0 that is neutral wrt. addition
4. a + (−a) = 0 For every a ∈ V there is an opposite object −a ∈ V
5. k1(k2a) = (k1k2)a Product by a scalar is associative
6. (k1 + k2)a = k1a + k2a

}
The distributive rule applies

7. k1(a + b) = k1a + k1b
8. 1a = a The scalar 1 is neutral in products with vectors

If L in the definition 11.1 stands for R then V is a vector space over the real
numbers. This means that the scalar k (only) can be an arbitrary real number.
Similarly one talks about V as a vector space over the complex numbers if L

stands for C , where k can be an arbitrary complex number.

The requirements I and II in the definition 11.1, that the results of addition and
of multiplication by a scalar in itself must be an element in V, are called the
stability requirements. In other words V must be stable with respect to the
two arithmetic operations.

The set of geometric vectors in the plane and the set of geometric vectors in space are
naturally the most obvious examples of vector spaces, since the eight arithmetic rules in
the definition 11.1 are constructed from the corresponding rules for geometric vectors.
But let us check the stability requirements. Is the sum of two vectors in the plane itself
a vector in the plane? And is a vector in the plane multiplied by a number in itself a
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vector in the plane? From the definition of the two arithmetic operations (see Definition
10.2 and Definition 10.3), the answer is obviously yes, therefor the set of vectors in the
plane is a vector space. Similarly we see that the set of vectors in 3-space is a vector
space.

Theorem 11.2 Uniqueness of the 0-Vector and the Opposite Vector

For every vector space V:

1. V only contains one neutral element with respect to addition.
2. Every vector a ∈ V has only one opposite element.

Proof

First part:
Let 01 and 02 be two elements in V both neutral with respect to addition. Then:

01 = 01 + 02 = 02 + 01 = 02 ,

where we have used the fact that addition is commutative. There is only one 0-vector: 0 .

Second part:
Let a1, a2 ∈ V be two opposite elements for a ∈ V . Then:

a1 = a1 + 0 = a1 + (a + a2) = (a + a1) + a2 = 0 + a2 = a2 ,

where we have used the fact that addition is both commutative and associative. Hence there
is for a only one opposite vector −a .

�

Definition 11.3 Subtraction

Let V be a vector space, and let a, b ∈ V . By the difference a− b we understand the
vector

a− b = a + (−b) . (11-1)
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Exercise 11.4

Prove that (−1)a = −a .

Exercise 11.5 Zero-Rule

Prove that the following variant of the zero-rule applies to any vector space:

ka = 0⇔ k = 0 or a = 0 . (11-2)

Example 11.6 Matrices as Vectors

For two arbitrary natural numbers m and n, Rm×n (that is, the set of real m× n-matrices) is a
vector space. Similarly Cm×n (that is, the set of complex m× n-matrices) is a vector space

Consider e.g. R2×3. If we add two matrices of this type we get a new matrix of the same type,
and if we multiply a 2× 3-matrix by a number, we also get a new 2× 3-matrix (see Definition
7.1). Thus the stability requirements are satisfied. That R2×3 in addition satisfies the eight
arithmetic rules, is apparent from Theorem 7.3.

Exercise 11.7

Explain that for every natural number n the number space Ln is a vector space. Remember
to think about the case n = 1 !

In the following two examples we shall see that the geometrically inspired vector space
theory, surprisingly, can be applied to well known sets of functions. Mathematic histori-
ans have in this connection talked about the geometrization of mathematical analysis!

Example 11.8 Polynomials as Vectors

The set of polynomials P : R 7→ R of at most n’th degree is denoted Pn(R). An element P in
Pn(R) is given by

P(x) = a0 + a1x + · · ·+ anxn (11-3)
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where the coefficients a0, a1, · · · an are arbitrary real numbers. Addition of two polynomials
in Pn(R) is defined by pairwise addition of coefficients belonging to the same degree of the
variable, and multiplication of a polynomial in Pn(R) by a number k is defined as the multi-
plication of every coefficient with k. As an example of the two arithmetic operations we look
at two polynomials from P3(R):

P(x) = 1− 2x + x3 = 1− 2x + 0x2 + 1x3

and
Q(x) = 2 + 2x− 4x2 = 2 + 2x− 4x2 + 0x3.

By the sum of P and Q we understand the polynomial R = P + Q given by

R(x) = (1 + 2) + (−2 + 2)x + (0− 4)x2 + (1 + 0)x3 = 3− 4x2 + x3

and by the multiplication of P by the scalar k = 3 we understand the polynomial S = 3P
given by

S(x) = (3 · 1) + (3 · (−2))x + (3 · 0)x2 + (3 · 1)x3 = 3− 6x + 3x3.

We will now justify that Pn(R) with the introduced arithmetic operations is a vector space!
That Pn(R) satisfies the stability requirements follows from the fact that the sum of two poly-
nomials of at most n’th degree in itself is a polynomial of at most n’th degree, and that multi-
plication of a polynomial of at most n’th degree by a real number again gives a polynomial of
at most n’th degree. The conditions 1, 2 and 5 - 8 in the definition 11.1 are satisfied, because
the same rules of operation apply to the calculations with coefficients of the polynomials that
are used in the definition of the operations. Finally the conditions 3 and 4 are satisfied since
the polynomial

P(x) = 0 + 0x + · · · 0xn = 0

constitutes the zero vector, and the opposite vector to P(x) ∈ Pn(R) is given by the polynomial

−P(x) = −a0 − a1x− · · · − anxn.

In the same way we show that polynomial P : C 7→ C of at most n’th degree, which we
denote by Pn(C) , is a vector space.

Exercise 11.9

Explain that P(R), that is the set of real polynomials, is a vector space.
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Example 11.10 Continuous Functions as Vectors

The set of continuous real functions on a given interval I ⊆ R is denoted C0(I). Addition
m = f + g of two functions f and g in C0(I) is defined by

m(x) = ( f + g)(x) = f (x) + g(x) for every x ∈ I

and multiplication n = k · f of the function f by a real number k by

n(x) = (k · f )(x) = k · f (x) for every x ∈ I .

We will now justify that C0(I), with the introduced operations of calculations, is a vector
space. Since f + g and k · f are continuous functions, we see that C0(I) satisfies the two
stability requirements. Moreover: there exists a function that acts as the zero vector, viz. the
zero function, that is, the function that has the value 0 for all x ∈ I, and the opposite vector
to f ∈ C0(I) is the vector (−1) f that is also written − f , and which for all x ∈ I has the value
− f (x). Now it is obvious that C0(I) with the introduced operations of calculation satisfies
all eight rules in definition 11.1, and C0(I) is thus a vector space.

11.2 Linear Combinations and Span

A consequence of arithmetic rules such as u+v = v+u and (u+v)+w = u+(v+w)
from the definition 11.1 is that one can omit parentheses when one adds a series of
vectors: the order of vector addition has no influence on the resulting sum vector. This
is the background for linear combinations where a set of vectors is multiplied by a scalar
and thereafter written as a sum.

Definition 11.11 Linear Combination

When in a vector space V p vectors v1, v2, . . . , vp are given, and arbitrary scalars
k1, k2, . . . , kp are chosen, then the sum

k1v1 + k2v2 + . . . + kpvp

is called a linear combination of the p given vectors.

If all the k1, · · · , kp are equal to 0, the linear combination is called improper, or trivial,
but if at least one of the scalars is different from 0, it is called proper or non-trivial.
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In the definition 11.11 only one linear combination is mentioned. In many circumstances
it is of interest to consider the total set of possible linear combinations of given vectors.
The set is called the span of the vectors. Consider e.g. a plane in space, through the
origin and containing the position vectors for two non-parallel vectors u and v. The
plane can be considered the span of the two vectors since the position vectors

→
OP= k1u + k2v

”run through” all points P in the plane when k1 and k2 take on all conceivable real
values, see Figure 11.1.

v

u

O

R

P

Q

Figure 11.1: u and v span a plane in space

Definition 11.12 Span

By the span of a given set of vectors v1, v2, . . . , vp in a vector space V we understand
the total set of all possible linear combinations of the vectors. The span of the p
vectors is denoted by

span{v1, v2, . . . , vp} .

Example 11.13 Linear Combination and Span

We consider in the vector space R2×3 the three matrices/vectors

A =

[
1 0 3
0 2 2

]
, B =

[
2 1 0
0 3 1

]
and C =

[
−1 −2 9

0 0 4

]
. (11-4)
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An example of a linear combination of the three vectors is

2A + 0 B + (−1)C =

[
3 2 −3
0 4 0

]
. (11-5)

We can then write [
3 2 −3
0 4 0

]
∈ span{A, B, C} . (11-6)

11.3 Linear Dependence and Linear Independence

Two geometric vectors u and v are linearly dependent if they are parallel, that is if there
exists a number k, such that v = ku. More generally an arbitrary set of vectors are
linearly dependent if one of the vectors is a linear combination of the others. We wish
to transfer this concept to vector space theory:

Definition 11.14 Linear Dependence and Independence

A set consisting of p vectors {v1, v2, . . . , vp} in a vector space V is linearly dependent
if at least one of the vectors can be written as a linear combination of the others: for
example

v1 = k2v2 + k3v3 + · · ·+ kpvp .

If none of the vectors can be written as a linear combination of the others, the set is
called linearly independent.

NB: If the set of vectors only consists of a single vector, the set is called linearly
dependent if it consists of the 0-vector, and otherwise linearly independent.

Example 11.15 Linear Dependence

Any set of vectors containing the zero vector, is linearly dependent! Consider e.g. the set
{u, v, 0, w}), here the zero vector can trivially be written as a linear combination of the three
other vectors in the set:

0 = 0u + 0v + 0w ,

where the zero vector is written as a linear combination of the other vectors in the set.
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Example 11.16 Linear Dependence

Consider in the vector space R2×3 the three matrices/vectors

A =

[
1 0 3
0 2 2

]
, B =

[
2 1 0
0 3 1

]
and C =

[
−1 −2 9

0 0 4

]
. (11-7)

C can be written as a linear combination of A and B since

C = 3A− 2B .

Therefore A, B and C are linearly dependent.

In contrast the set consisting of A and B is linearly independent, because these two vectors
are not ”parallel’, since a number k obviously does not exist such that B = kA. Similarly with
the sets {A, C} and {B, C} .

When you investigate whether a set of vectors is linearly dependent, use of the defi-
nition 11.14 provokes the question which of the vectors is a linear combination of the
others. Where should we begin the investigation? The dilemma can be avoided if by-
passing the definition we instead use the following theorem:

Theorem 11.17 Linear Dependence and Independence

A set of vectors {v1, v2, . . . , vp} in a vector space V is linearly dependent if and only
if the zero vector can be written as proper linear combination of the vectors – that is,
if and only if scalars k1, k2, . . . , kp exist that are not all equal to 0, and that satisfy

k1v1 + k2v2 + · · ·+ kpvp = 0 . (11-8)

. Otherwise the vectors are linearly independent.
.

Proof

Assume first that {v1, v2, . . . , vp} are linearly dependent, then one can be written as a linear
combination of the others, e.g.

v1 = k2v2 + k3v3 + · · ·+ kpvp . (11-9)
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But this is equivalent to
v1 − k2v2 − k3v3 − · · · − kpvp = 0 , (11-10)

whereby the zero-vector is written as a linear combination of the vector set in which at least
one of the coefficients are not 0, since v1 has the coefficient 1.

Conversely, assume that the zero-vector is written as a proper linear combination of the set
of vectors, where one of the coefficients, for example the v1 coefficient k1, is different from 0
(the same argument works for any of other coefficient). Then we have

k1v1 + k2v2 + · · ·+ kpvp = 0 ⇔ v1 = (−1)
k2

k1
v2 + · · ·+ (−1)

kp

k1
vp . (11-11)

Thus v1 is written as a linear combination of the other vectors and the proof is complete.

�

Example 11.18 Linear Dependence

In the number space R4 the vectors a = (1, 3, 0, 2), b = (−1, 9, 0, 4) and c = (2, 0, 0, 1) are
given. Since

3a− b− 2c = 0

the zero vector is written as a non-trivial linear combination of the three vectors. Thus they
are linearly dependent.

11.4 Basis and Dimension of a Vector Space

A compelling argument for the introduction of a basis in a vector space is that all vectors
in the vector space then can be written using coordinates. In a later section it is shown
how problems of calculation can be simplified and standardized with vectors when we
use coordinates. But in this section we will discuss the requirements that a basis should
satisfy and investigate the consequences of these requirements.

A basis for a vector space consists of certain number of vectors, usually written in a
definite order. A decisive task for the basis vectors is that they should span the vector
space, but more precisely we want this task to be done with as few vectors as possible.
In this case it turns out that all vectors in the vector space can be written uniquely as a
linear combination of the basis vectors. And it is exactly the coefficients in the unique
linear combination we will use as coordinates.
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Let us start out from some characteristic properties about bases for geometric vectors in
the plane.

a3

v

a2

a1

O

Figure 11.2: Coordinate system in the plane with the basis (a1, a2)

Consider the vector set {a1, a2, a3} in Figure 11.2. There is no doubt that any other
vector in the plane can be written as a linear combination of the three vectors. But the
linear combination is not unique, for example the vector v can be written in these two
ways:

v = 2a1 + 3a2 − 1a3

v = 1a1 + 2a2 + 0a3 .

The problem is that the a-vectors are not linearly independent, for example a3 = −a1 −
a2 . But if we remove one of the vectors, e.g. a3 , the set is linearly independent, and
there is only one way of writing the linear combination

v = 1a1 + 2a2 .

We can summarize the characteristic properties of a basis for the geometric vectors in
the plane thus:

1. any basis must consist of linearly independent vectors,

2. any basis must contain exactly two vectors (if there are more than two, they are
linearly dependent, if there are less than two they do not span the plane), and

3. every set consisting of two linear independent vectors is a basis.

These properties can be transferred to other vector spaces. We embark on this now, and
we start by the general definition of a basis.
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Definition 11.19 Basis

By a basis for a vector space V we understand a set {v1, v2, . . . , vn} of vectors from
V that satisfy:

1. {v1, v2, . . . , vn} spans V .

2. {v1, v2, . . . , vn} is linearly independent.

When we discuss coordinates later, it will be necessary to consider the basis elements
to have a define order, and so we will write them as an ordered set, denoted by using
parentheses: (v1, v2, . . . , vn).

Here we should stop and check that the definition 11.19 does in fact satisfy our require-
ments of uniqueness of a basis. This is established in the following theorem.

Theorem 11.20 Uniqueness Theorem

If a basis for a vector space V is given, any vector in V can then be written as a unique
linear combination of the basis vectors.

Proof

We give the idea in the proof by looking at a vector space V that has a basis consisting of
three basis vectors (a, b, c) and assume that v is an arbitrary vector in V that in two ways
can be written as a linear combination of the basis vectors. We can then write two equations

v = k1a + k2b + k3c
v = k4a + k5b + k6c

(11-12)

By subtracting the lower equation from the upper equation in (11-12) we get the equation

0 = (k1 − k4)a + (k2 − k5)b + (k3 − k6)c . (11-13)

Since a, b and c are linearly independent, the zero vector can only be written as an improper
linear combination of these, therefore all coefficients in (11-12) are equal to 0, yielding k1 = k4,
k2 = k5 and k3 = k6. But then the two ways v has been written as linear combinations of the
basis vectors, is in reality the same, there is only one way!

This reasoning is immediately extendable to a basis consisting of an arbitrary number of basis
vectors.
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�

We now return to the fact that every basis for geometric vectors in the plane contains
two linearly independent basis vectors, and that similarly for geometric vectors in space
the basis must consist of three linearly independent basis vectors. It turns out that the
fixed number of basis vectors is a property of all vector spaces with a basis, and this
makes it possible to talk about the dimension of a vector space that has a basis. To prove
the property we need a lemma.

Lemma 11.21

If a vector space V has a basis consisting of n basis vectors then every set from V
that contains more than n vectors will be linearly dependent.

Proof

To get a grasp of the proof’s underlying idea, consider a vector space V that has a basis
consisting of two vectors (a, b), and investigate three arbitrary vectors c, d and e from V. We
prove that the three vectors necessarily must be linearly independent.

Since (a, b) is a basis for V, we can write three equations

c = c1a + c2b
d = d1a + d2b
e = e1a + e2b

(11-14)

Consider further the zero vector written as the following linear combination

x1c + x2d + x3e = 0 , (11-15)

which by substitution of the equations (11-14) into (11-15) is equivalent to

(x1c1 + x2d1 + x3e1)a + (x1c2 + x2d2 + x3e2)b = 0 . (11-16)

Since the zero vector only can be obtained as a linear combination of a and b, if every coeffi-
cient is equal to 0, (11-16) is equivalent to the following system of equations

c1x1 + d1x2 + e1x3 = 0
c2x1 + d2x2 + e2x3 = 0

(11-17)
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This is a homogeneous system of linear equations in which the number of equations is less
than the number of unknowns. Therefore the system of equations has infinitely many solu-
tions, which means that (11-16) not only is obtainable with x1 = 0, x2 = 0 and x3 = 0. Thus
we have shown that the ordered set (c, d, e) is linearly dependent.

In general: Assume that the basis V consists of n vectors, and that m vectors from V where
m > n are given. By following the same procedure as above a homogeneous system of lin-
ear equations emerges with n equations in m unknowns that, because m > n , similarly has
infinitely many solutions. By this it is shown that the m vectors are linearly dependent.

�

Then we are ready to give the following important theorem:

Theorem 11.22 The Number of Basis Vectors

If a vector space V has a basis consisting of n basis vectors, then every basis for V
will consist of n basis vectors.

Proof

Assume that V has two bases with different numbers of big(asis vectors. We denote the basis
with the least number of basis vectors a and the one with largest number b. According to
Lemma 11.21 the b-basis vectors must be linearly dependent, and this contradicts that they
form a basis. The assumption that V can have two bases with different numbers of basis
vectors, must therefore be untrue.

�

That the number of basis vectors according to theorem 11.22 is a property of vector spaces
with a basis, motivates the introduction of the concept of dimension:
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Definition 11.23 Dimension

By the dimension of a vector space V that has a basis b, we understand the number
of vectors in b. If this number is n, one says that V is n-dimesional and write

dim(V) = n . (11-18)

Remark: There are vector spaces that do not have a finite basis, see Section 11.7.2 below.

Example 11.24 Dimension of Geometric Vector Spaces

Luckily the definition 11.23 confirms an intuitive feeling that the set of geometric vectors
in the plane has the dimension two and that the set of geometric vectors in space has the
dimension three!

Example 11.25 The Standard Basis for Number Spaces

An arbitrary vector v = (a, b, c, d) in R4 or in C4 (that is in L4 ) can in an obvious way be
written as a linear combination of four particular vectors in L4

v = a (1, 0, 0, 0) + b (0, 1, 0, 0) + c (0, 0, 1, 0) + d (0, 0, 0, 1) . (11-19)

We put e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) and conclude
using (11-19) that the ordered set (e1, e2, e3, e4) spans L4.

Since we can see that none of the vectors can be written as a linear combination of the others,
the set is linearly independent, and (e1, e2, e3, e4) is thereby a basis for L4. This particular
basis is called standard basis for L4 . Since the number of basis vectors in the standard e-basis
is four, dim(L4) = 4 .

This can immediately be generalized to Ln : For every n the set (e1, e2, . . . , en) where

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

is a basis for Ln. This is called standard basis for Ln . It is noticed that dim(Ln) = n .
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Example 11.26 Standard Basis for Matrix Spaces

By standard basis for the vector space R2×3 or C2×3 , we understand the matrix set([ 1 0 0
0 0 0

]
,
[

0 1 0
0 0 0

]
, . . . ,

[
0 0 0
0 0 1

])
(11-20)

Similarly we define a standard basis for an arbitrary matrix space Rm×n and for an arbitrary
matrix space Cm×n .

Exercise 11.27

Explain that the matrix set, which in Example 11.26 is referred to as the standard basis for
R2×3 , is in fact a basis for this vector space.

Example 11.28 The Monomial Basis for Polynomial Spaces

In the vector space P2(R) of real polynomials of at most 2nd degree, the ordered set (1, x, x2)

is a basis. This is demonstrated in the following way.

1. Every polynomial P(x) ∈ P2(R) can be written in the form

P(x) = a0 · 1 + a1 · x + a2 · x2 ,

that is as a linear combination of the three vectors in the set.

2. The set {1, x, x2} is linearly independent, since the equation

a0 · 1 + a1 · x + a2 · x2 = 0 for every x

according to the identity theorem for polynomials is only satisfied if all the coefficients
a0, a1 and a2 are equal to 0 .

A monomial is a polynomial with only one term. Hence, the ordered set (1, x, x2) is called the
monomial basis for P2(R), and dim(P2(R)) = 3 .

For every n the ordered set (1, x, x2, . . . , xn) is a basis for Pn(R), and is called the monomial
basis for Pn(R). Therefore we have that dim(Pn(R)) = n + 1 .

Similarly the ordered set (1, z, z2, . . . , zn) is a basis for Pn(C), it is called monomial basis for
Pn(C). Therefore we have that dim(Pn(C)) = n + 1 .
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In the set of plane geometric vectors one can choose any pair of two linearly independent
vectors as basis. Similarly in 3-space any set of three linear independent vectors is a
basis. We end the section by transferring this to general n-dimensional vector spaces:

Theorem 11.29 Sufficient Conditions for a Basis

In an n-dimensional vector space V, an arbitrary set of n linearly independent vec-
tors from V constitutes a basis for V .

Proof

Since V is assumed to be n-dimensional, it must have a basis b consisting of n basis vectors.
Let the a-set (a1, a2, · · · , an) be an arbitrary linearly independent set of vectors from V. The
set is then a basis for V if it spans V. Suppose this is not the case, and let v be a vector V
that does not belong to span{a1, a2, · · · , an}. Then (v, a1, a2, · · · , an) must be linearly inde-
pendent, but this contradicts theorem 11.21 since there are n + 1 vectors in the set. Therefore
the assumption that the a-set does not span V must be untrue, and it must accordingly be a
basis for V.

�

Exercise 11.30

Two geometric vectors a = (1,−2, 1) and b = (2,−2, 0) in 3-space are given. Determine a
vector c such that the ordered set (a, b, c) is a basis for the set of space vectors.

Exercise 11.31

In the 4-dimensional vector space R2×2, consider the vectors

A =

[
1 1
1 0

]
, B =

[
1 1
0 1

]
of C =

[
1 0
1 1

]
. (11-21)

Explain why the ordered set (A, B, C) is a linearly independent set, and complement the set
with a 2×2 matrix D such that (A, B, C, D) is a basis for R2×2 .
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11.5 Vector Calculations Using Coordinates

Coordinates are closely connected to the concept of a basis. When a basis is chosen
for a vector space, any vector in the vector space can be described with the help of its
co-ordinates with respect to the chosen basis. By this we get a particularly practical al-
ternative to the calculation operations, addition and multiplication by a scalar, which
originally are defined from the ’anatomy’ of the specific vector space. Instead of car-
rying out these particularly defined operations we can implement number calculations
with the coordinates that correspond to the chosen basis. In addition it turns out that
we can simplify and standardize the solution of typical problems that are common to
all vector spaces. But first we give a formal introduction of coordinates with respect to
a chosen basis.

Definition 11.32 Coordinates with Respect to a Given Basis

In an n-dimensional vector space V the basis a = (a1, a2, . . . , an) and a vector x are
given. We consider the unique linear combination of the basis vectors that according
to 11.20 is a way of writing x:

x = x1a1 + x2a2 + · · ·+ xnan . (11-22)

The coefficients x1, x2, . . . , xn in (11-22) are denoted x’s coordinates with respect to the
basis a, or x’s a-coordinates, and they are gathered in a coordinate vector as follows:

ax =


x1
x2
...

xn

 . (11-23)
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Example 11.33 Coordinates with Respect to a New Basis

In the number space R3 a basis a is given by ((0, 0, 1), (1, 2, 0), (1,−1, 1)). Furthermore the
vector v = (7, 2, 6) is given. Since

2 · (0, 0, 1) + 3 · (1, 2, 0) + 4 · (1,−1, 1) = (7, 2, 6)

we see that

av =

 2
3
4

 .

The vector (7, 2, 6) therefore has the a-coordinates (2, 3, 4) .

In order to be able to manipulate the coordinates of several vectors in various arithmetic
operations we will need the following important theorem.

Theorem 11.34 The Coordinate Theorem

In a vector space V two vectors u and v plus a real number k are given. In addition
an arbitrary basis a is chosen. The two arithmetic operations u+ v of k u can then be
carried out using the a-coordinates like this:

1. a(u + v) = au + av

2. a(ku) = k au

In other words: The coordinates for a vector sum are obtained by adding the coor-
dinates for the vectors, and the coordinates for a vector multiplied by a number are
the coordinates of the vector multiplied by the number.

Proof

See the proof for the corresponding theorem for geometric vectors in 3-space, Theorem 10.38.
The proof for the general case is obtained as a simple extension.

�
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Example 11.35 Vector Calculation Using Coordinates

We now carry out a vector calculation using coordinates. The example is not particularly
mathematically interesting, but we carry it out in detail in order to demonstrate the technique
of Theorem 11.34.

There are given three polynomials in the vector space P2(R):

R(x) = 2− 3x− x2 , S(x) = 1− x + 3x2 and T(x) = x + 2x2 .

The task is now to determine the polynomial P(x) = 2R(x)− S(x) + 3T(x) . We choose to
carry this out using coordinates for the polynomials with respect to the monomial basis for
P2(R).

mP(x) = m
(
2R(x)− S(x) + 3T(x)

)
= m(2R(x)) + m(−S(x)) + m(3T(x))

= 2 mR(x)− mS(x) + 3 mT(x)

= 2

 2
−3
−1

−
 1
−1

3

+ 3

 0
1
2

=
 3
−2

1

 .

We translate the resulting coordinate vector to the wanted polynomial:

P(x) = 3− 2x + x2 .

11.6 On the Use of Coordinate Matrices

When we embark on problems with vectors and use their coordinates with respect to a
given basis it often leads to a system of linear equations which we then solve by matrix
calculations. One matrix is of particular importance, viz. the matrix that is formed by
gathering the coordinate columns of more vectors in a coordinate matrix:

Explanation 11.36 Coordinate Matrix for a Vector Set

If in a n-dimensional vector space V a basis a exists, and a set of m numbered vec-
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tors is given, then the a-coordinate matrix is formed by gathering the a-coordinate
columns in the given order to form an m×n matrix.

By way of example consider a set of three vectors in R2 : ((1, 2), (3, 4), (5, 6)) . The
coordinate matrix of the set with respect to the standard e-basis for R2 is the 2×3-
matrix [

1 3 5
2 4 6

]
.

We will now show how coordinate matrices emerge in series of examples which we,
for the sake of variation, take from different vector spaces. The methods can directly
be used on other types of vector spaces, and after each example the method is demon-
strated in a concentrated and general form.

It is important for your own understanding of the theory of vector spaces that
you practice and realize how coordinate matrices emerge in reality when you
start on typical problems.

11.6.1 Whether a Vector is a Linear Combination of Other Vectors

In R4 we are given four vectors

a1 = (1, 1, 1, 1)
a2 = (1, 0, 0, 1)
a3 = (2, 3, 1, 4)
b = (2,−2, 0, 1)

Problem: Investigate if b is a linear combination of a1, a2 and a3 .

Solution: We will investigate whether we can find x1, x2, x3 ∈ R such that

x1a1 + x2a2 + x3a3 = b . (11-24)
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By theorem 11.34 we can rewrite (11-24) as the e-coordinate vector equation

x1


1
1
1
1

+ x2


1
0
0
1

+ x3


2
3
1
4

=


2
−2

0
1


which is equivalent to the system of linear equations

x1 + x2 + 2x3 = 2
x1 + 3x3 = −2

x1 + x3 = 0
x1 + x2 + 4x3 = 1

We form the augmented matrix of the system of equations and give (without further
details) its reduced row echelon form

T =


1 1 2 2
1 0 3 −2
1 0 1 0
1 1 4 1

 ⇒ rref(T) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (11-25)

From (11-25) it is seen that the rank of the coefficient matrix of the system of equations
is 3, while the rank of the augmented matrix is 4. The system of equations has therefore
no solutions. This means that (11-24) cannot be solved. We conclude

b /∈ span{a1, a2, a3} .

Method 11.37 Linear Combination

You can decide whether a given vector b is a linear combination of other vectors
a1, a2, . . . , ap by solving the system of linear equations which has the augmented
matrix that is equal to the coordinate matrix for (a1, a2, . . . , ap, b ) with respect to a
given basis.

NB: In general there can be none, one or infinitely many ways a vector can be written
as linear combinations of the others.
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11.6.2 Whether Vectors are Linearly Dependent

We consider in the vector space R2×3 the three matrices:

A =

[
1 0 3
0 2 2

]
, B =

[
2 1 0
0 3 1

]
and C =

[
−1 −2 9

0 0 4

]
. (11-26)

Problem: Investigate whether the three matrices are linearly dependent.

Solution: We use theorem 11.17 and try to find three real numbers x1 , x2 of x3 that are
not all equal to 0, but which satisfy

x1A + x2B + x3C =

[
0 0 0
0 0 0

]
. (11-27)

By theorem 11.34 we can rewrite (11-27) as the e-coordinate vector equation

x1



1
0
3
0
2
2

+ x2



2
1
0
0
3
1

+ x3



−1
−2

9
0
0
4

=


0
0
0
0
0
0


That is equivalent to the homogeneous system of linear equations with the augmented
matrix that here is written together with reduced row echelon form (details are omitted):

T =



1 2 −1 0
0 1 −2 0
3 0 9 0
0 0 0 0
2 3 0 0
2 1 4 0

 ⇒ rref(T) =



1 0 3 0
0 1 −2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (11-28)

From (11-28) we see that both the coefficient matrix and the augmented matrix have the
rank 2, and since the number of unknowns is larger, viz. 3, we conclude that Equation
(11-27) has infinitely many solutions , see Theorem 6.33. Hence the three matrices are
linearly dependent. For instance, from rref(T) one can derive that

−3A + 2B + C =

[
0 0 0
0 0 0

]
.
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Method 11.38 Linear Dependence or Independence

One can decide whether the vectors v1, v2, . . . , vp are linearly dependent by solving
the linear homogenous system of linear equations with the augmented matrix that
is equal to the coordinate matrix for (v1, v2, . . . , vp, 0) with respect to a given basis.

NB: Since the system of equations is homogeneous, there will be either one solution
or infinitely many solutions. If the rank of the coordinate matrix is equal to p, there
is one solution, and this solution must be the zero solution, and the p vectors are
therefore linearly independent. If the rank of the coordinate matrix is less than p,
there are infinitely many solutions, including non-zero solutions, and the p vectors
are therefore linearly dependent.

11.6.3 Whether a Set of Vectors is a Basis

In an n-dimensional vector space we require n basis vectors, see theorem 11.22. When
one has asked whether a given set of vectors can be a basis, one can immediately con-
clude that this is not the case if the number of vectors in the set is not equal to n. But
if there are n vectors in the set according to theorem 11.29 we need only investigate
whether the set is linear independent, and for this we already have method 11.38. How-
ever we can in an interesting way develop the method further by using the determinant
of the coordinate matrix of the vector set!

Let us e.g. investigate whether the polynomials

P1(x) = 1 + 2x2, P2(x) = 2− x + x2 of P3(x) = 2x + x2

form a basis for P2(R). Since dim(P2(R)) = 3, the number of polynomials is compatible
with being a basis. In order to investigate whether they also are linearly independent,
we use their coordinate vectors with respect to the monomial basis and consider the
equation:

x1

 1
0
2

+ x2

 2
−1

1

+ x3

 0
2
1

=
 0

0
0

 .

The vectors are linearly independent if and only if the only solution is the trivial so-
lution x1 = x2 = x3 = 0 . The equation is equivalent to a homogeneous system of
linear equations consisting of 3 equations in 3 unknowns. The coefficient matrix and
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the augmented matrix of the system are:

A =

 1 2 0
0 −1 2
2 1 1

 and T =

 1 2 0 0
0 −1 2 0
2 1 1 0

 .

As for every homogeneous system of linear equations the right hand side of the aug-
mented matrix consists of only 0’s, therefore ρ(A) = ρ(T), and thus solutions do exist.
There is one solution exactly when ρ(A) is equal to the number of unknowns, that is
3. And this solution must be the zero solution x1 = x2 = x3 = 0 , since Lhom always
contains the zero solution.

Here we can use that A is a square matrix and thus has a determinant. A has full rank
exactly when it is invertible, that is when det(A) 6= 0.

Since a calculation shows that det(A) = 5 we conclude that
(

P1(x), P2(x), P3(x)
)

con-
stitutes a basis for P2(R) .

Method 11.39 Proof of a Basis, given n vectors

Given an n-dimensional vector space V. To determine whether a vector set consist-
ing of n vectors (v1, v2, . . . , vn) is a basis for V, we only need to investigate whether
the set is linearly independent. A particular option for this investigation occurs be-
cause the coordinate matrix of the vector set is a square n× n matrix:

The set constitutes a basis for V exactly when the determinant of the coordinate
matrix of the set with respect to a basis a is non-zero, in short

(v1, v2, . . . , vn) is a basis ⇔ det
([

av1 av2 · · · avn
])
6= 0 . (11-29)

11.6.4 To Find New Coordinates when the Basis is Changed

An important technical problem for the advanced use of linear algebra is to be able to
calculate new coordinates for a vector when a new basis is chosen. In this context a
particular change of basis matrix plays an important role. We now demonstrate how basis
matrices emerge.
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In a 3-dimensional vector space V a basis a is given. We now choose a new basis b that
is determined by the a-coordinates of the basis vectors:

ab1 =

 1
1
1

 , ab2 =

 1
0
2

 and ab3 =

 2
3
0

 .

Problem 1: Determine the a-coordinates for a vector v given by the b-coordinates as:

bv =

 5
−4
−1

 . (11-30)

Solution: The expression (11-30) corresponds to the vector equation

v = 5b1 − 4b2 − 1b3

which we below first convert to an a-coordinate vector equation, re-writing the right
hand side as a matrix-vector product, before finally computing the result:

av = 5

 1
1
1

− 4

 1
0
2

− 1

 2
3
0


=

 1 1 2
1 0 3
1 2 0

 5
−4
−1

=
−1

2
−3

 .

Notice that the 3×3-matrix in the last equation is the coordinate matrix for the b-basis
vectors with respect to basis a . It plays an important role, since we apparently can
determine the a-coordinates for v by multiplying b-coordinate vector for v on the left by
this matrix! Therefore the matrix is given the name change of basis matrix. The property of
this matrix is that it translates b-coordinates to a-coordinates, and it is given the symbol
aMb . The coordinate change relation can then be written in this convenient way

av = aMb bv . (11-31)

Problem 2: Determine the b-coordinates for a vector u that has a-coordinates:

au =

 1
2
3

 . (11-32)
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Solution: Since aMb is the coordinate matrix for a basis, it is invertible, and thus has an
inverse matrix. We therefore use the coordinate change relation (11-31) as follows:

au = aMb bu ⇔

aMb
−1

au = aMb
−1

aMb bu ⇔

bu = aMb
−1

au ⇔

bu =

 1 1 2
1 0 3
1 2 0

−1 1
2
3

=
 11
−4
−3

 .

Method 11.40 Coordinate Change when the Basis is Changed

When a basis a is given for a vector space, and when a new basis b is known by the
a-coordinates of its basis vectors, the change of basis matrix aMb is identical to the
a-coordinate matrix for b-basis vectors.

1. If b-coordinates for a vector v are known, these a-coordinates can be found by
the matrix-vector product:

av = aMb bv .

2. Conversely, if the a-coordinates for v are known, the b-coordinates can be
found by the matrix-vector product:

bv = aMb
−1

av .

In short the change of basis matrix that translates a-coordinates to b-
coordinates, is the inverse of the change of basis matrix that translate b-
coordinates to a-coordinates:

bMa = (aMb)
−1 .

11.7 Subspaces

Often you encounter that a subset of a vector space is itself a vector space. In Figure 11.3

are depicted two position vectors
→

OP and
→

OQ that span the plane F :
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F

O

P

Q

Figure 11.3: A plane through the origin interpreted as a subspace in space

Since span{
→

OP,
→

OQ} can be considered to be a (2-dimensional) vector space in its own
right, it is named a subspace of the (3-dimensional) vector space of position vectors in
space.

Definition 11.41 Subspace

A subset U of a vector space V is called a subspace of V if U is itself a vector space.

In any vector space V one can immediately point to two subspaces:
1) V is in itself a subspace of V.
2) The set { 0 } is a subspace of V.
These subspaces are called the trivial subspaces in V.

When one must check whether a subset is a subspace, one only has to check whether
the stability requirements are satisfied:

Theorem 11.42 Sufficient Conditions for a Subspace

A non-empty subset U of a vector space V is a subspace of V if U is stable with
respect to addition and multiplication by a scalar. This means

1. The sum of two vectors from U belongs to U .

2. The product of a vector in U with a scalar belongs to U .
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Proof

Since U satisfies the two stability requirements in 11.1, it only remains to show that U also
satisfies the eight arithmetic rules in the definition. But this is evident since all vectors in U
are also vectors in V where the rules apply.

�

Example 11.43 Basis for a Subspace

We consider a subset M1 of R2×2 , consisting of matrices of the type[
a b
b a

]
(11-33)

where a and b are arbitrary real numbers. We try to add two matrices of the type (11-33)[
1 2
2 1

]
+

[
3 4
4 3

]
=

[
4 6
6 4

]
and we multiply one of type (11-33) by a scalar

−3
[

2 −3
−3 2

]
=

[
−6 9

9 −6

]
.

in both cases the resulting matrix is of type (11-33) and it is obvious that this would also apply
had we used other examples. Therefore M1 satisfies the stability requirements for a vector
space. Thus it follows from theorem 11.42 that M1 is a subspace of R2×2 .

Further remark that M1 is spanned by two linear independent 2×2 matrices since[
a b
b a

]
= a

[
1 0
0 1

]
+ b

[
0 1
1 0

]
.

Therefore M1 is a 2-dimensional subspace of R2×2 , and a possible basis for M1 is given by([ 1 0
0 1

]
,
[

0 1
1 0

])
.
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Example 11.44 A Subset which is Not a Subspace

The subset M2 of R2×2 consists of all matrices of the type[
a b

a · b 0

]
(11-34)

where a and b are arbitrary real numbers. We try to add two matrices of the type (11-34)[
1 2
2 0

]
+

[
2 3
6 0

]
=

[
3 5
8 0

]
.

Since 8 6= 3 · 5, this matrix is not of the type (11-34). Therefore M2 is not stable under linear
combinations, and cannot be a subspace.

11.7.1 About Spannings as Subspaces

Theorem 11.45 Spannnings of Subspaces

For arbitrary vectors a1, a2, . . . , ap in vector space V, the set span{a1, a2, . . . , ap} is a
subspace of V .

Proof

The stability requirements are satisfied because 1) the sum of two linear combinations of the
p vectors in itself is a linear combination of them and 2) a linear combination of the p vectors
multiplied by a scalar in itself is a linear combination of them. The rest follows from Theorem
11.42.

�

The solution set Lhom for a homogeneous system of linear equations with n unknowns
is always a subspace of the number space Rn and the dimension of the subspace is the
same as the number of free parameters in Lhom . We show an example of this below.
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Example 11.46 Lhom is a Subspace

The following homogeneous system of linear equations of 3 equations in 5 unknowns

x1 + 2 x3 − 11 x5 = 0

x2 + 4 x5 = 0

x4 + x5 = 0

has the solution set (details are omitted):
x1

x2

x3

x4

x5

 = t1


−2

0
1
0
0

+ t2


11
−4

0
−1

1

 where t1, t2 ∈ R . (11-35)

We see that Lhom is a span of two vectors in R5. Then it is according to theorem 11.45
a subspace of R5. Since the two vectors evidently are linearly independent, Lhom is a 2-
dimensional subspace of R5, with a basis(

(−2, 0, 1, 0, 0) , (11,−4, 0,−1, 1)
)

.

In the following example we will establish a method for how one can determine a basis
for a subspace that is spanned by a number of given vectors in a subspace.

Consider in R3 four vectors

v1 = (1, 2, 1), v2 = (3, 0,−1), v3 = (−1, 4, 3) and v4 = (8,−2,−4) .

We wish to find a basis for the subspace

U = span {v1, v2, v3, v4} .

Let b = (b1, b2, b3) be an arbitrary vector in U. We thus assume that the following vector
equation has a solution:

x1v1 + x2v2 + x3v3 + x4v4 = b . (11-36)

By substitution of the five vectors into (11-36), it is seen that (11-36) is equivalent to an
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inhomogeneous system of linear equations with the augmented matrix:

T =

 1 3 −1 8 b1
2 0 4 −2 b2
1 −1 3 −4 b3

⇒ rref(T) =

 1 0 2 −1 c1
0 1 −1 3 c2
0 0 0 0 0

 . (11-37)

Here c1 is placeholder for the number that b1 has been transformed into following the
row operations leading to the reduced row echelon form rref(T). Similarly for c2. Re-
mark that b3 after the row operations must be transformed into 0, or else (x1, x2, x3, x4)
could not be a solution as we have assumed.

But it is in particular the leading 1’s in rref(T) on which we focus! They show that v1
and v2 span all of U, and that v1 and v2 are linear independent. We can convince our-
selves of both by considering equation (11-36) again.

First: Suppose we had only asked whether v1 and v2 span all of U. Then we should
have omitted the terms with v3 and v4 from (11-36), and then we would have obtained:

rref(T2) =

 1 0 c1
0 1 c2
0 0 0


that shows that c1 v1 + c2 v2 = b , and that v1 and v2 then span all of U.

Secondly: Suppose we had asked whether v1 and v2 are linearly independent. Then we
should have omitted the terms with v3 and v4 from (11-36), and put b = 0. And then
we would have got:

rref(T3) =

 1 0 0
0 1 0
0 0 0


That shows that the zero vector can only be written as a linear combination of v1 and v2
if both of the coefficients x1 and x2 are 0. And thus we show that v1 and v2 are linearly
independent. In total we have shown that (v1, v2) is a basis for U.

The conclusion is that a basis for U can be singled out by the leading 1’s in rref(T), see
(11-37). The right hand side in rref(T) was meant to serve our argument but its con-
tribution is now unnecessary. Therefore we can summarize the result as the following
method:
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Method 11.47 About refining a Spanning Set to a Basis

When, in a vector space V, for which a basis a has been chosen, one wishes to find a
basis for the subspace

U = span
{

v1, v2, . . . , vp
}

everything can be read from

rref
( [

av1 av2 . . . avp
] )

. (11-38)

If in the i’th column in (11-38) there are no leading 1’s, then vi is deleted from the
set (v1, v2, . . . , vp) . The set reduced in this way is a basis for U .

Since the number of leading 1’s in (11-38) is equal to the number of basis vectors in
the chosen basis for U , it follows that

Dim(U) = ρ
( [

av1 av2 . . . avp
] )

. (11-39)

11.7.2 Infinite-Dimensional Vector Space

Before we end this eNote, that has cultivated the use of bases and coordinates, we must
admit that not all vector spaces have a basis. Viz. there exist infinite-dimensional vector
spaces.

This we can see through the following example:

Example 11.48 Infinite-Dimensional Vector Spaces

All polynomials in the vector space Pn(R) are continuous functions, therefore Pn(R) is an
n+1 dimensional subspace of the vector space C0(R) of all real continuous functions. Now
consider P(R) , the set of all real polynomials, that for the same reason is also a subspace of
C0(R). But P(R) must be infinite-dimensional, since it has Pn(R), for every n, as a subspace.
For the same reason C0(R) must also be infinite-dimensional.



eNote 11 11.7 SUBSPACES 35

Exercise 11.49

By C1(R) is understood the set of all differentiable functions, with R as their domain, and
with continuous derivatives in R.

Explain why C1(R) is an infinite-dimensional subspace of C0(R) .
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