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eNote 10

Geometric Vectors

The purpose of this note is to give an introduction to geometric vectors in the plane and
3-dimensional space, aiming at the introduction of a series of methods that manifest themselves
in the general theory of vector spaces. The key concepts are linear independence and linear
dependence, plus basis and coordinates. The note assumes knowledge of elementary geometry in
the plane and 3-space, of systems of linear equations as described in eNote 6 and of matrix
algebra as described in eNote 7.

Updated 25.09.21 David Brander

By a geometric vector in the plane R2 or Euclidean 3-space, R3, we understand a con-
nected pair consisting of a length and a direction. Euclidean vectors are written as small
bold letters, e.g. v. A vector can be represented by an arrow with a given initial point
and a terminal point. If the vector v is represented by an arrow with the initial point A

and the terminal point B, we use the representation v =
→

AB. All arrows with the same
length and direction as the arrow from A to B, also represent v.

Example 10.1 Parallel Displacement Using Vectors

Geometric vectors can be applied in parallel displacement in the plane and 3-space. In Figure
10.1 the line segment CD is constructed from the line segment AB as follows: all points of
AB are displaced by the vector u. In the same way the line segment EF emerges from AB by

parallel displacement by the vector v.
→

AB=
→

CD =
→
EF but notice that e.g.

→
AB 6=

→
FE.

In what follows we assume that a unit line segment has been chosen, that is a line segment
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Figure 10.1: Parallel displacement by a vector

that has the length 1. By |v| we understand the length of the vector v as the proportion-
ality factor with respect to the unit line segment, that is, a real number. All vectors of
the same length as the unit line segment are called unit vectors.

For practical reasons a particular vector that has length 0 and which has no direction
is introduced. It is called the zero vector and is written 0. For every point A we put
→

AA= 0. Any vector that is not the zero vector is called a proper vector.

For every proper vector v we define the opposite vector−v as the vector that has the same

length as v , but the opposite direction. If v =
→

AB, then
→

BA= −v . For the zero vector
we put −0 = 0 .

It is often practical to use a common initial point when different vectors are to be rep-
resented by arrows. We choose a fixed point O which we term the origen, and consider
those representations of the vectors that have O as the initial point. Vectors represented
in this way are called position vectors, because every given vector v has a unique point

(position) P that satisifies v =
→

OP. Conversely, every point Q corresponds to a unique

vector u such that
→

OQ= u.
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By the angle between two proper vectors in the plane we understand the unique angle be-
tween their representations radiating from O , in the interval [ 0; π] . If a vector v in the
plane is turned the angle π/2 counter-clockwise, a new vector emerges that is called
v’s hat vector, it is denoted v̂.

By the the angle between two proper vectors in 3-space we understand the angle between
their representations radiating from O in the plane that contains their representations.

It makes good and useful sense “to add vectors”, taking account of the vectors’ lengths
and directions. Therefore in the following we can introduce some arithmetic operations
for geometric vectors. First it concerns two linear operations, addition of vectors and
multiplication of a vector by a scalar (a real number). Later we will consider three ways
of multiplying vectors, viz. the dot product, and for vectors in 3-space the cross product
and the scalar triple product.

10.1 Addition and Multiplication by a Scalar

Definition 10.2 Addition

Given two vectors in the plane or 3-space, u and v. The sum u + v is determined in
the following way:

• We choose the origin O and mark the position vectors u =
→

OQ and v =
→

OR.

• By parallel displacement of the line segments OR by u the line segment QP is
constructed.

•
→

OP is then the position vector for the sum of u and v, in short u + v =
→

OP.

v

u

u+v

P

QO

R
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In physics you talk about the ”parallelogram of forces": If the object O is influ-
enced by the forces u and v, the resulting force can be determined as the vector
sum u+ v, the direction of which gives the direction of the resulting force, and
the length of which gives the magnitude of the resulting force. If in particular
u and v are of the same length, but have opposite directions, the resulting force
is equal to the 0-vector.

We then introduce multiplication of a vector by a scalar:

Definition 10.3 Multiplication by a Scalar

Given a vector v in the plane or 3-space and a scalar k. If v = 0, we have kv = vk = 0.
Otherwise by the product kv the following is understood:

• If k > 0, then kv = vk is the vector that has the same direction as v and which
is k times as long as v.

• If k = 0, then kv = 0.

• If k < 0, then kv = vk is the vector that has the opposite direction of v and which
is −k = | k | as long as v.

Example 10.4 Multiplication by a Scalar

A given vector v is multiplied by −1 and 2, respectively:

2v

(-1)v

v

Figure: Multiplication of vector by -1 and 2
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It follows immediately from the defintion 10.3 that multiplication of a vector
by −1 gives the vector’s opposite vector, in short

(−1)u = −u .

Thus we use the following way of writing

(−5)v = −(5v) = −5v .

From the definition 10.3 the zero rule follows immediately for geometric vec-
tors:

kv = 0 ⇔ k = 0 or v = 0 .

In the following example it is shown that multiplication of an arbitrary vector by an
arbitrary scalar can be performed by a genuine compasses and ruler construction.

Example 10.5 Geometrical Multiplication

Given a vector a and a line segment of length k, we wish to construct the vector ka.

ka

a

P

O

Q

1 k
Figure: Multiplication of a vector by an arbitrary scalar

First the position vector
→

OQ= a is marked. Then with O as the initial point we draw a line
which is used as a ruler and which is not parallel to a, and where the numbers 1 and k are
marked. The triangle OkP is drawn so it is congruent with the triangle O1Q. Since the two

triangles are similar it must be true that ka =
→

OP.
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Exercise 10.6

Given two parallel vectors a and b and a ruler line. How can you using a pair of compasses
and the ruler line construct a line segment of the length k given that b = ka.

Exercise 10.7

Given the proper vector v and a ruler line. Draw the vector 1
|v| v.

Parametric representations for straight lines in the plane or 3-space are written using proper
vectors. Below we first give an example of a line through the origin and then an example
of a line not passing through the origin.

Example 10.8 Parametric Representation of a Straight Line

Given a straight line l through the origin, we wish to write the points on the line using a
parametric representation:

l

t r

r
O

R
P

Figure: Parametric representation for a line through the origin

A point R on l different from the origin is chosen. The vector r =
→

OR is called a direction
vector for l . For every point P on l corresponds exactly one real number t that satisfies
→

OP= tr. Conversely, to every real number t corresponds exactly one point P on l so that
→

OP= tr . As t traverses the real numbers from -∞ to +∞, P will traverse all of l in the
direction determined by r. Then

{ P |
→

OP= tr where t ∈ R }

is a parametric representation of l .
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Example 10.9 Parametric Representation of a Straight Line

The line m does not go through the origin. We wish to describe the points on m by use of a
parametric representation:

m b

t r
r B

R

O

P

Figure: Parametric representation of a line

First an initial point B on m is chosen, and we put b =
→

OB. A point R ∈ m different from

B is chosen. The vector r =
→

BR is then a directional vector for m . To every point P on m

corresponds exactly one real number t that fulfils
→

OP= b+ tr. Conversely, to every number t

exactly one point P on m corresponds so that
→

OP= b + tr. When t traverses the real numbers
from -∞ to +∞, P will traverse all of m in the direction determined by r. Then

{ P |
→

OP= b + tr where t ∈ R }

is a parametric representation for m .

Parametric representations can also be used for the description of line segments. This is
the subject of the following exercise.

Exercise 10.10

Consider the situation in example 10.9. Draw the oriented line segment with the parametric
representation

{ P |
→

OP= b + tr, where t ∈ [−1; 2 ] } .
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Exercise 10.11

Given two (different) points A and B . Describe with a parametric representation the oriented
line segment from A to B .

We will need more advanced arithmetic rules for addition of geometric vectors and
multiplication of geometric vectors by scalars than the ones we have given in the exam-
ples above. These are sketched in the following theorem and afterwards we will discuss
examples of how they can be justified on the basis of already defined arithmetic opera-
tions and theorems known from elementary geometry.

Theorem 10.12 Arithmetic Rules

For arbitrary geometric vectors u, v and w and for arbitrary real numbers k1 and k2
the following arithmetic rules are valid:
1. u + v = v + u Addition is commutative
2. (u + v) + w = u + (v + w) Addition is associative
3. u + 0 = u The zero vector is neutral for addition
4. u + (−u) = 0 The sum of a vector and its opposite is 0
5. k1(k2u) = (k1k2)u Scalar multiplication is associative
6. (k1 + k2)u = k1u + k2u

}
The distributive rules apply

7. k1(u + v) = k1u + k1v
8. 1u = u The scalar 1 is neutral in the product with vectors

The arithmetic rules in Theorem 10.12 can be illustrated and proven using geometric
constructions. Let us as an example take the first rule, the commutative rule. Here we
just have to look at the figure in the definition 10.2 , where u + v is constructed. If we
construct v + u, we will displace the line segment OQ with v and consider the emerg-
ing line segment RP2. It must be true that the parallelogram OQPR is identical to the
parallelogram OQP2R and hence P2 = P and u + v = v + u.

In the following two exercises the reader is asked to explain two of the other arithmetic
rules.
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Exercise 10.13

Explain using the diagram the arithmetic rule k(u + v) = ku + kv.

k(a+b)

kb

a+b

b

ka

a

O

Exercise 10.14

Draw a figure that illustrates the rule (u + v) + w = u + (v + w).

For a given vector u it is obvious that the opposite vector −u is the only vector that
satisfies the equation u + x = 0 . For two arbitrary vectors u and v it is also obvious
that exactly one vector exists that satisfies the equation u + x = v , viz. the vector
x = v + (−u) which is illustrated in Figure 10.2.

x

-u

v

u

Figure 10.2: Opposite of a vector

Therefore we can introduce subtraction of vectors as a variation of addition like this:
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Definition 10.15 Subtraction

By the difference of two vectors v and u we understand the vector

v− u = v + (−u) . (10-1)

It is not necessary to introduce a formal definition of division of a vector by a
scalar, we consider this as a rewriting of multiplication by a scalar:

Division by a scalar :
v
k
=

1
k
· v ; k 6= 0

10.2 Linear Combinations

A point about the arithmetic rule (u + v) + w = u + (v + w) from the theorem 10.12
is that parentheses can be left out in the process of adding a series of vectors, since it
has no consequences for the resulting vector in what order the vectors are added. This
is the background for linear combinations where sets of vectors are multiplied by scalars
and thereafter written as a sum.

Definition 10.16 Linear Combination

When the real numbers k1, k2, . . . , kn are given and in the plane or 3-space the vectors
v1, v2, . . . , vn then the sum

k1v1 + k2v2 + . . . + knvn

is called a linear combination of the n given vectors.

If all the coefficients k1, · · · , kn are equal to 0, the linear combination is called im-
proper, or trivial, but if at the least one of the coefficients is different from 0, it is
proper, or non-trivial.
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Example 10.17 Construction of a Linear Combination

c b

d
3c

-b
2aa OO

Figure: Construction of a linear combination

In the diagram, to the left the vectors a, b and c are drawn. On the figure to the right we
have constructed the linear combination d = 2a− b + 3c.

Exercise 10.18

There are given in the plane the vectors u, v, s and t, plus the parallelogram A, see diagram.

A
ts

v

uO

Figure: Linear combinations

1. Write s as a linear combination of u og v.

2. Show that v can be expressed by the linear combination v = 1
3 s + 1

6 t.

3. Draw the linear combination s + 3u− v.

4. Determine real numbers a, b, c and d such that A can be described by the parametric
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representation

A = { P
∣∣ →OP= xu + yv with x ∈ [ a; b ] and y ∈ [ c; d ]} .

10.3 Linear Dependence and Linear Independence

If two vectors have representations on the same straight line, one says that they are
linearly dependent. It is evident that two proper vectors are linearly dependent if they
are parallel; otherwise they are linearly independent. We can formulate it as follows: Two
vectors u and v are linearly dependent if the one can be obtained from the other by
multiplication by a scalar different from 0, if e.g. there exists a number k 6= 0 such that

v = ku .

We wish to generalize this original meaning of the concepts of linear dependence and
independence such that the concepts can be used for an arbitrary set of vectors.

Definition 10.19 Linear Dependence and Independence

A set of vectors (v1, v2, . . . , vn) where n ≥ 2 ,is called linearly dependent if at least
one of the vectors can be written as a linear combination of the others.

If none of the vectors can be written as a linear combination of the others, the set is
called linearly independent.

NB: A set that only consists of one vector is called linearly dependent if the vector is
the 0-vector, otherwise linearly independent.
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Example 10.20 Linearly Dependent and Linearly Independent Sets of Vec-
tors

In the plane are given three sets of vectors (u, v), (r, s) and (a, b, c) , as shown.

r
s

c

b
a

v

u

The set (u, v) is linearly dependent since for this example we have

u = −2v .

Also the set (a, b, c) is linearly dependent, since e.g.

b = a− c .

Only the set (r, s) is linearly independent.

Exercise 10.21

Explain that three vectors in 3-space are linearly dependent if and only if they have represen-
tations lying in the same plane. What are the conditions three vectors must fulfill in order to
be linearly independent?

Exercise 10.22

Consider (intuitively) what is the maximum number of vectors a set of vectors in the plane
can comprise, if the set is to be linearly independent. The same question in 3-space.

When investigate whether or not a given set of vectors is linearly independent or lin-
early dependent, the definition 10.19 does not give a practical procedure. It might be
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easier to use the theorem that follows below. This theorem is based on the fact that a
set of vectors is linearly dependent if and only if the 0-vector can be written as a proper
linear combination of the vectors. Assume – as a prerequisite to the theorem – that the
set (a, b, c) is linearly dependent because

c = 2a− 3b.

Then the 0-vector can be written as the proper linear combination

2a− 3b− c = 0 .

Conversely assume that the 0-vector is a proper linear combination of the vectors u, v
og w like this:

2u− 2v + 3w = 0 .

Then we have (e.g.) that

w = −2
3

u +
2
3

v

and hence the vectors are linearly dependent.

Theorem 10.23 Linear Independence

Let k1, k2, . . . , kn be real numbers. That the set of vectors (v1, v2, . . . , vn) is linearly
independent implies that the equation

k1v1 + k2v2 + · · ·+ knvn = 0 (10-2)

is only satisfied when all the coefficients k1, k2, . . . , kn are equal to 0 .

Proof

Assume that the set (v1, v2, . . . , vn) is linearly dependent, and let vi be a vector that can be
written as a linear combination of the other vectors. We reorder (if necessary) the set, such
that i = 1, following which v1 can be written in the form

v1 = k2v2 + · · ·+ knvn ⇔ v1 − k2v2 − · · · − knvn = 0 . (10-3)

The 0-vector is hereby written in the form (10-2), in which not all the coefficients are 0 , be-
cause the coefficient to v1 is 1 .
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Conversely, assume that the set is written in the form (10-2), and let ki 6= 0 . We reorder (if
necessary) the set such that i = 1 following which we have

k1v1 = −k2v2 − · · · − knvn ⇔ v1 = − k2

k1
v2 − · · · −

kn

k1
vn . (10-4)

From this we see that the set is linearly independent.

�

Example 10.24 Linearly Independent Set

Every set of vectors containing the zero vector is linearly dependent. Consider e.g. the set
(u, v, 0, w). It is obvious that the zero-vector can be written as the other three vectors:

0 = 0u + 0v + 0w ,

where the zerovector is written as a linear combination of the other vectors in the set.

Parametric representations for planes in 3-space is written using two linearly independent
vectors. Below we first give an example of a plane through the origin, then an example
of a plane that does not contain the origin.

Example 10.25 Parametic Representation for a Plane

Given a plane in 3-space through the origin as shown. We wish to describe the points in the
plane by a parametric representation.

v

u

O

R

P

Q

Figure: A plane in 3-space through the origin
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In the given plane we choose two points Q and R, both not the origin, and that do not lie

on a common line through the origin. The vectors u =
→

OQ and v =
→

OR will then be linearly
independent, and are called direction vectors of the plane. For every point P in the plane we

have exactly one pair of numbers (s, t) such that
→

OP= su + tv . Conversely, for every pair of

real numbers (s, t) exists exactly one point P in the plane that satisfies
→

OP= su + tv . Then

{P |
→

OP= su + tv ; (s, t) ∈ R2}

is a parametric representation of the given plane.

Example 10.26 Parametric Representation for a Plane

A plane in 3-space does not contain the origin. We wish to describe the plane using a para-
metric representation.

b

v

uB

P

O

R

Q

Figure: A plane in 3-space

First we choose an initial point B in the plane, and we put b =
→

OB. Then we choose two

linearly independent direction vectors u =
→

BQ and v =
→

BR where Q and R belong to the
plane. To every point P in the plane corresponds exactly one pair of real numbers (s, t), such
that →

OP=
→

OB +
→
BP= b + su + tv .

Conversely, to every pair of real numbers (s, t) corresponds exactly one point P in the plane
as given by this vector equation. Then

{P |
→

OP= b + su + tv ; (s, t) ∈ R2}
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is a parametric representation for the given plane.

Exercise 10.27

Give a parametric representation for the parallelogram A lying in the plane shown:

b

A
v

u
B

O

10.4 The Standard Bases in the Plane and Space

In analytic geometry one shows how numbers and equations can describe geometric ob-
jects and phenomena including vectors. Here the concept of coordinates is decisive. It
is about how we determine the position of the geometric objects in 3-space and relative
to one another using numbers and tuples of numbers. To do so we need to choose a
number of vectors which we appoint as basis vectors. The basis vectors are ordered,
that is they are given a distinct order, and thus they constitute a basis. When a basis is
given all the vectors can be described using coordinates, which we assemble in so called
coordinate vectors. How this whole procedure takes place we first explain for the stan-
dard bases in the plane and 3-space. Later we show that often it is useful to use other
bases than the standard bases and how the coordinates of a vector in different bases are
related.
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Definition 10.28 Standard Basis in the Plane

By a standard basis or an ordinary basis for the geometric vectors in the plane we
understand an ordered set of two vectors (i, j) that satisfies:

• i has the length 1 .

• j = î (that is j is the hat vector of i ).

By a standard coordinate system in the plane we understand a standard basis (i, j)
together with a chosen the origin O . The coordinate system is written (O, i, j) . By
the x-axis and the y-axis we understand oriented number axes through O that are
parallel to i and j ,respectively.

1

j

1
i

O X

Y

Figure: Standard coordinate system in the plane

Theorem 10.29 Coordinates of a Vector

If e = (i, j) is a standard basis, then any vector v in the plane can be written in exactly
one way as a linear combination of i and j:

v = xi + yj.

The coefficients x and y in the linear combination are called v’s coordinates with respect
to the basis e, or for short v’s e-coordinates, and they are assembled in a coordinate
vector as follows:

ev =

[
x
y

]
.
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Definition 10.30 The Coordinates of a Point

Let P be any point in the plane, and let (O, i, j) be a standard coordinate system in
the plane. By the coordinates of P with respect to the coordinate system we under-

stand the coordinates of the position vector
→

OP with respect to the standard basis
(i, j) .

y

x

ayj

xi

j

iO

P(x,y)

X

Y

The introduction of a standard basis and the coordinates of a vector in 3-space is a
simple extension of the corresponding coordinates in the plane.



eNote 10 10.4 THE STANDARD BASES IN THE PLANE AND SPACE 20

Definition 10.31 Standard Basis in Space

By a standard basis or an ordinary basis for the geometric vectors in 3-space we
understand an ordered set of three vectors (i, j, k) that satisfies:

• i, j and k all have the length 1.

• i, j and k are pairwise orthogonal.

• When i, j and k are drawn from a chosen point, and we view i and j from the
endpoint of k, then i turns into j, when i is turned by the angle π

2 counter-
clockwise.

By n standard coordinate system in 3-space we understand a standard basis (i, j, k)
together with a chosen the origin O . The coordinate system is written (O, i, j, k) . By
the x-axis, the y-axis and the z-axis we understand oriented number axes through
the origin that are parallel to i , j and k , respectively.

1

k
1

j 1
i O

Z

Y

X

Figure: A standard coordinate system in 3-space.
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Theorem 10.32 The Coordinates of a Vector

When (i, j, k) is a basis, every vector v in 3-space can be written in exactly one way
as a linear combination of i, j and k:

v = xi + yj + zk.

The coefficients x, y and z in the linear combination are called v’s coordinates with re-
spect to the basis, or in short v’s e-coordinates, and they are assembled in a coordinate
vectodr as follows:

ev =

 x
y
z

 .

Definition 10.33 The Coordinates of a Point

Let P be an arbitrary point in 3-space, and let (O, i, j, k) be a standard coordinate
system in 3-space. By the coordinates of P with respect to the coordinate system we

understand the coordinates of the position vector
→

OP with respect to the standard
basis (i, j, k) .

a

z

y

x
xi+yj

zk

k
ji O

P

X

Z

Q

Y
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10.5 Arbitrary Bases for the Plane and Space

If two linearly independent vectors in the plane are given, it is possible to write every
other vector as a linear combination of the two given vectors. In Figure 10.3 we consider
e.g. the two linearly independent vectors a1 and a2 plus two other vectors u and v: in
the plane

uv

a2

a1O

Figure 10.3: Coordinate system in the plane with basis (a1, a2)

We see that u = 1a1 + 2a2 and v = −2a1 + 2a2 . These linear combinations are unique
because u and v cannot be written as a linear combination of a1 and a2 using any other
coefficients than those written. Similarly, any other vector in the plane can be written as
a linear combination of a1 and a2, and our term for this is that the two vectors span the
whole plane.

This makes it possible to generalise the concept of a basis. Instead of a standard basis
we can choose to use the set of vectors (a1, a2) as a basis for the vectors in the plane.
If we call the basis a , we say that the coefficients in the linear combinations above are
coordinates for u and v, respectively, with respect to a basis a, which is written like this:

au =

[
1
2

]
and av =

[
−2

2

]
. (10-5)

For the set of geometric vectors in 3-space we proceed in a similar way. Given three
linearly independent vectors, then every vector in 3-space can be written as a unique-
linear combination of the three given vectors. They span all of 3-space. Therefore we
can choose three vectors as a basis for the vectors in 3-space and express an arbitrary
vector in 3-space by coordinates with respect to this basis. A method for determination
of the coordinates is shown in Figure 10.4, where we are given an a-basis (a1, a2, a3) plus
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a2

a3

u

a1

O

P

Q

Figure 10.4: Coordinate system with basis (a1, a2, a3)

an arbitrary vector u. Through the endpoint P for u a line parallel to a3 is drawn, and
the point of intersection of this line and the plane that contains a1 and a2, is denoted Q.

Two numbers k1 and k2 exist such that
→

OQ= k1a1 + k2a2 because (a1, a2) constitutes a
basis in the plane that contains a1 and a2 . Furthermore there exists a number k3 such

that
→

QP= k3a3 since
→

QP and a3 are parallel. But then we have

u =
→

OQ +
→

QP= k1a1 + k2a2 + k3a3.

u thereby has the coordinate set (k1, k2, k3) with respect to basis a.

Example 10.34 Coordinates with Respect to an Arbitrary Basis

In 3-space three linearly independent vectors a1, a2 and a3 are given as shown in the Figure.

a2

a3

u

a1

O

Figure: Coordinate system with basis (a1, a2, a3)
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Since u can be written as a linear combination of a1, a2 and a3 in the following way

u = 3a1 + a2 + 2a3 , (10-6)

then u has the coordinates (3, 1, 2) with respect to the basis a given by (a1, a2, a3) which we
write in short as

au =

 3
1
2

 . (10-7)

We gather the above considerations about arbitrary bases in the following more formal
definition:

Definition 10.35 The Coordinates of a Vector with Respect to a Basis

• By a basis a for the geometric vectors in the plane we will understand an ar-
bitrary ordered set of two linear independent vectors (a1, a2). Let an arbitrary
vector u be determined by the linear combination u = xa1 + ya2. The coeffi-
cients x and y are called u’s coordinates with respect to the basis a, or shorter u’s
a-coordinates, and they are assembled in a coordinate vector as follows:

au =

[
x
y

]
. (10-8)

• By a basis b for the geometric vectors in 3-space we understand an arbitrary
ordered set of three linear independent vectors (b1, b2, b3). Let an arbitrary
vector v be determined by the linearly combinationen v = xb1 + yb2 + zb3.
The coefficients x, y and z are called v’s coordinates with respect to the basis b,
or shorter v’s b-coordinates, and they are assembled in a coordinate vector as
follows:

bv =

 x
y
z

 . (10-9)

The coordinate set of a given vector will change when we change the basis. This crucial
point is the subject of the following exercise.
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Exercise 10.36

i

j a2

a
1

O

Figure: Change of basis

In the diagram, we are given the standard basis e = (i, j) in the plane plus another basis
a = (a1, a2).

1. A vector u has the coordinates (5,−1) with respect to basis e. Determine u’s
a-coordinates.

2. A vector v has the coordinates (−1,−2) with respect to basis a. Determine v’s
e-coordinates.
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Exercise 10.37

d

c

b

a

O

1. In the diagram, it is evident that a, b and c are linearly independent. A basis m is
therefore given by (a, b, c). Determine the coordinate vector md.

2. It is also evident from the figure that (a, b, d) is a basis, let us call it n. Determine the
coordinate vector nc.

3. Draw, with the origin as the initial point, the vector u that has the m-coordinates

mu =

 2
1
1

 .

10.6 Vector Calculations Using Coordinates

When you have chosen a basis for geometric vectors in the plane (or in 3-space), then
all vectors can be described and determined using their coordinates with respect to the
chosen basis. For the two arithmetic operations, addition and multiplication by a scalar,
that were introduced previously in this eNote by geometrical construction, we get a
particularly practical alternative. Instead of geometrical constructions we can carry out
calculations with the coordinates that correspond to the chosen basis.

We illustrate this with an example in the plane with a basis a given by (a1, a2) plus two
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vectors u and v drawn from O, see Figure 10.5. The exercise is to determine the vector
b = 2u− v, and we will do this in two different ways.

(4,2)b

u
v

a2

a1
O

Figure 10.5: Linear combination determined using coordinates

Method 1 (geometric): First we carry through the arithmetic operations as defined in
10.2 and 10.3, cf. the grey construction vectors in Figure 10.5.

Method 2 (algebraic): We read the coordinates for u and v and carry out the arithmetic
operations directly on the coordinates:

ab = 2 au−a v = 2
[

1
2

]
−
[
−2

2

]
=

[
4
2

]
. (10-10)

Now b can be drawn directly from its coordinates (4, 2) with respect to basis a.

That it is allowed to use this method is stated in the following theorem.
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Theorem 10.38 Basic Rules for Coordinate Calculations

Two vectors u and v in the plane or in 3-space plus a real number k are given.
Moreover, an arbitrary basis a has been chosen.The two arithmetic operations u + v
and k u can then be carried out using coordinates as follows:

1. a(u + v) = au + av

2. a(ku) = k au

In other words: the coordinates for a vector sum are obtained by adding the coordi-
nates for the summands. And the coordinates for a vector multiplied by a number
are the coordinates of the vector multiplied by that number.

Proof

We carry through the proof for the set of geometric vectors in 3-space. Suppose the coordi-
nates for u and v with respect to the chosen basis a are given by

au =

 u1

u2

u3

 and av =

 v1

v2

v3

 . (10-11)

We then have
u = u1a1 + u2a2 + u3a3 og v = v1a1 + v2a2 + v3a3 (10-12)

and accordingly, through the application of the commutative, associative and distributive
arithmetic rules, see Theorem10.12,

u + v = (u1a1 + u2a2 + u3a3) + (v1a1 + v2a2 + v3a3)

= (u1 + v1)a1 + (u2 + v2)a2 + (u3 + v3)a3
(10-13)

which yields

a(u + v) =

 u1 + v1

u2 + v2

u3 + v3

=
 u1

u2

u3

+
 v1

v2

v3

= au + av (10-14)

so that now the first part of the proof is complete. In the second part of the proof we again
use a distributive arithmetic rule, see Theorem 10.12:

ku = k(u1a1 + u2a2 + u3a3) = (k · u1)a1 + (k · u2)a2 + (k · u3)a3 (10-15)

which yields

a(ku) =

 k · u1

k · u2

k · u3

= k

 u1

u2

u3

= k au (10-16)
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so that now the second part of the proof is complete.

�

Theorem 10.38 makes it possible to perform more complicated arithmetic operations
using coordinates, as shown in the following example.

Example 10.39 Coordinate Vectors for a Linear Combination

The three plane vectors a, b and c have the following coordinate vectors with respect to a
chosen basis v:

va =

[
1
2

]
, vb =

[
0
1

]
and vc =

[
5
−1

]
. (10-17)

Problem: Determine the coordinate vector d = a− 2b + 3c with respect to basis v.
Solution:

vd = v(a− 2b + 3c)

= v(a + (−2)b + 3c)

= va + v(−2b) + v(3c)

= va− 2 vb + 3 vc

=

[
1
2

]
− 2
[

0
1

]
+ 3
[

5
−1

]
=

[
16
−3

]
.

Here the third equality sign is obtained using the first part of Theorem 10.38 and the fourth
equality sign from the second part of that theorem.

Example 10.40 The Parametric Representation of a Plane in Coordinates

v

u

O

R

P

Q

Figure: A plane in 3-space
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In accordance with Example 10.25, the plane through the origin shown in the diagram has
the parametric representation

{P |
→

OP= su + tv ; (s, t) ∈ R2}. (10-18)

Suppose that in 3-space we are given a basis a and that

au =

 u1

u2

u3

 and av =

 v1

v2

v3

 .

The parametric representation (10-18) can then be written in coordinate form like this: x
y
z

= s

 u1

u2

u3

+ t

 v1

v2

v3

 (10-19)

where a
→

OP= (x, y, z) and (s, t) ∈ R2 .

Example 10.41 The Parametric Representation of a Plane in Coordinates

b

v

uB

P

O

R

Q

In accordance with Example 10.26 the plane through the origin shown in the diagram has the
parametric representation

{P |
→

OP= b + su + tv ; (s, t) ∈ R2}. (10-20)

Suppose that in 3-space we are given a basis a and that

ab =

 b1

b2

b3

, au =

 u1

u2

u3

 and av =

 v1

v2

v3

 .
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The parametric representation (10-18) can then be written in coordinate form like this: x
y
z

=
 b1

b2

b3

+ s

 u1

u2

u3

+ t

 v1

v2

v3

 (10-21)

where a
→

OP= (x, y, z) and (s, t) ∈ R2

10.7 Vector Equations and Matrix Algebra

A large number of vector-related problems are best solved by resorting to vector equa-
tions. If we wish to solve these equations using the vector coordinates in a given ba-
sis, we get systems of linear equations. The problems can then be solved using matrix
methods that follow in eNote 6. This subsection gives examples of this and sums up
this approach by introducing the coordinate matrix concept in the final Exercise 10.45.

Example 10.42 Whether a Vector is a Linear Combination of Other Vectors

In 3-space are given a basis a and three vectors u, v and p which have the coordinates with
respect to the basis a given by:

au =

 2
1
5

, av =

 1
4
3

 and ap =

 0
7
1

 .

Problem: Investigate whether p is a linear combination of u and v.
Solution: We will investigate whether we can find coefficients k1, k2, such that

k1u + k2v = p .

We arrange the corresponding coordinate vector equation

k1

 2
1
5

+ k2

 1
4
3

=
 0

7
1


which is equivalent to the following system of equations

2k1 + k2 = 0

k1 + 4k2 = 7

5k1 + 3k2 = 1

(10-22)
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We consider the augmented matrix T for the system of equations and give (without details)
the reduced row echelon form of the matrix:

T =

 2 1 0
1 4 7
5 3 1

 → rref(T) =

 1 0 −1
0 1 2
0 0 0

 (10-23)

We see that the system of equations has exactly one solution, k1 = −1 and k2 = 2, meaning
that

−1u + 2v = p .

Example 10.43 Whether a Set of Vectors is Linearly Dependent

In 3-space are given a basis v and three vectors a, b and c which with respect to this basis
have the coordinates

va =

 5
1
3

, vb =

 1
0
4

 and vc =

 2
3
1

 .

Problem: Investigate whether the set of vectors (a, b, c) is linearly dependent.

Solution: Following theorem 10.23 we can investigate whether there exists a proper linear
combination

k1a + k2b + k3c = 0 .

We look at the corresponding coordinate vector equation

k1

 5
1
3

+ k2

 1
0
4

+ k3

 2
3
1

=
 0

0
0


that is equivalent to the following homogeneous system of linear equations

5k1 + k2 + 2k3 = 0

k1 + 3k3 = 0

3k1 + 4k2 + k3 = 0

(10-24)

We arrange the augmented matrix T of the system of equations and give (without details) the
reduced row echelon form of the matrix:

T =

 5 1 2 0
1 0 3 0
3 4 1 0

 → rref(T) =

 1 0 0 0
0 1 0 0
0 0 1 0

 (10-25)

We see that the system of equations only have the zero solution k1 = 0, k2 = 0 and k3 = 0. The
set of vectors (a, b, c) is therefore linearly independent. Therefore you may choose (a, b, c) as
a new basis for the set of vectors in 3-space.
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In the following example we continue the discussion of the relation between coordinates
and change of basis from exercise 10.36

Example 10.44 The New Coordinates after Change of Basis

i

j a2

a
1

O

Figure: Change of basis

In the diagram we are given a standard basis e= (i, j) and another basis a= (a1, a2). When the
basis is changed, the coordinates of any given vector are changed. Here we give a systematic
method for expressing the change in coordinates using a matrix-vector product. First we read
the e-coordinates of the vectors in basis a:

ea1 =

[
1
−2

]
and ea2 =

[
1
1

]
. (10-26)

1. Problem: Suppose a vector v has the set of coordinates av =

[
v1

v2

]
. Determine the

e-coordinates of v.

Solution: We have that v = v1a1 + v2a2 and therefore following Theorem 10.38:

ev = v1

[
1
−2

]
+ v2

[
1
1

]
=

[
1 1
−2 1

][
v1

v2

]

If we put M =

[
1 1
−2 1

]
, we express v’s e-coordinates by the matrix-vector product

ev = M · av (10-27)

2. Problem: Suppose a vector v has the set of coordinates ev =

[
v1

v2

]
. Determine the

a-coordinates of v.
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Solution: We multiply from the left on both sides of 10-27 with the inverse matrix to M
and get a-coordinates of v expressed by the matrix-vector product:

av = M−1 · ev (10-28)

Exercise 10.45

By a coordinate matrix with respect to a given basis a for a set of vectors me mean the matrix
that is formed by combining the vector’s a-coordinate columns to form a matrix.
Describe the matrix T in example 10.42 and 10.43 and the matrix M in 10.44 as coordinate
matrices.
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10.8 Theorems about Vectors in a Standard Basis

In this subsection we work with standard coordinate systems, both in the plane and
in 3-space. We introduce two different multiplications between vectors, the dot product
which is defined both in the plane and in 3-space, and the cross product that is only
defined in 3-space. We look at geometric applications of these types of multiplication
and at geometrical interpretations of determinants.

10.8.1 The Dot Product of two Vectors

Definition 10.46 The Dot Product in the Plane

In the plane are given two vectors ea =

[
a1
a2

]
and eb =

[
b1
b2

]
. By the dot product (or

the scalar product) of a and b we refer to the number

a · b = a1 · b1 + a2 · b2 . (10-29)

Definition 10.47 The Dot Product in Space

In 3-space are given two vectors ea =

 a1
a2
a3

 and eb =

 b1
b2
b3

. By the dot product (or

the scalar product) of a and b we understand the number

a · b = a1 · b1 + a2 · b2 + a3 · b3 . (10-30)

For the dot product between two vectors the following rules of calculation apply.
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Theorem 10.48 Arithmetic Rules for the Dot Product

Given three vectors a, b and c in the plane or in 3-space and the number k. Observe:

1. a · b = b · a (commutative rule)

2. a · (b + c) = a · b + a · c (associative rule)

3. (ka) · b = a · (kb) = k(a · b)

4. a · a = |a|2

5. |a + b|2 = |a|2 + |b|2 + 2a · b.

Proof

The Rules 1, 2, 3 follow from a simple coordinate calculation. Rule 4 follows from the
Pythagorean Theorem, and Rule 5 is a direct consequence of Rules 1, 2 and 4.

�

In the following three theorems we look at geometric applications of the dot product.

Theorem 10.49 The Length of a Vector

Let v be an arbitrary vector in the plane or in 3-space. The length of v satisfies

|v| =
√

v · v . (10-31)

Proof

The theorem follows immediately from the arithmetic Rule 4 in 10.48

�
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vb

aO

Figure 10.6: Angle between two vectors

Example 10.50 Length of a Vector

Given the vector v in 3-space and ev = (1, 2, 3). We then have

|v| =
√

12 + 22 + 32 =
√

14 .

The following fact concerns the angle between two vectors, see Figure 10.6.

Theorem 10.51 The Angle between Vectors

In the plane or 3-space we are given two proper vectors a and b. The angle v between
a and b satisfies

cos(v) =
a · b
|a||b| (10-32)

Proof

The theorem can be proved using the cosine relation. In carrying out the proof one needs
Rule 5 in theorem 10.48. The details are left for the reader.

�

From this theorem it follows directly:
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Corollary 10.52 The Size of Angles

Consider the situation in Figure 10.6. We see

1. a · b = 0⇔ angle(a, b) = π
2

2. a · b > 0⇔ angle(a, b) < π
2

3. a · b < 0⇔ angle(a, b) > π
2

The following theorems are dedicated to orthogonal projections. In Figure 10.7 two
vectors a and b in the plane or 3-space are drawn from the origin.

v

proj(b,a)

b

a PO

Figure 10.7: Orthogonal projection

Consider P, the foot of the perpendicular from b’s endpoint to the line containing a. By

the orthogonal projection of b onto a we mean the vector
→

OP, denoted proj(b, a).

Theorem 10.53 The Length of a Projection

Given two proper vectors a and b in the plane or 3-space. The length of the orthog-
onal projection of b onto a is:

|proj(b, a)| = |a · b||a| (10-33)
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Proof

Using a known theorem about right angled triangles plus Theorem 10.51 we get

|proj(b, a)| = | cos(v)| |b| = |a · b||a| .

�

Theorem 10.54 Formula for the Projection Vector

Given two proper vectors a and b in the plane or 3-space. The orthogonal projection
of b on a is:

proj(b, a) =
a · b
|a|2 a . (10-34)

Proof

If a and b are orthogonal the theorem is true since the projection in that case is the zero
vector. Conversely, let sign(a · b) denote the sign of a · b. We have that sign(a · b) is positive
exactly when a and proj(b, a) have the same direction and negative exactly when they have
the opposite direction. Therefore we get

proj(b, a) = sign(a · b) · |proj(b, a)| a
|a| =

a · b
|a|2 a ,

where we have used Theorem 10.53, and the fact that a
|a| is a unit vector pointing in the

direction of a.

�
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Figure 10.8: A triangle spanned by two vectors in the plane

10.8.2 Geometric Interpretation of the Determinant of a 2× 2 Matrix

A triangle 4 = 4(p, a, b) is determined by two vectors drawn from a common initial
point, see the triangle4 = 4(p, a, b) in Figure 10.8.

The area of a triangle is known to be half the base times its height. We can choose the
length |a| of a as the base. And the height in the triangle is

|b| sin(θ) =
|b · â|
|â| , (10-35)

where θ is the angle between the two vectors a and b, and where â denotes the hat
vector in the plane to a, that is in coordinates we have â = (−a2, a1). Hence the area is:

Area(4(p, a, b)) =
1
2
|b · â|

=
1
2
|a1b2 − a2b1|

= | 1
2

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ |
=

1
2
| det

( [
a1 b1
a2 b2

] )
|

=
1
2
| det ( [a b] ) | .

(10-36)
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Thus we have proven the theorem:

Theorem 10.55 Area of a Triangle as a Determinant

The area of the triangle 4(p, a, b) is the absolute value of half the determinant of
the 2× 2 matrix that is obtained by insertion of a and b as columns in the matrix.

10.8.3 The Cross Product and the Scalar Triple Product

The cross product of two vectors and the scalar triple product of three vectors are intro-
duced using determinants:

Definition 10.56 Cross Product

In 3-space two vectors are given ea =

 a1
a2
a3

and eb =

 b1
b2
b3

.

By the cross product (or the vector product) a× b of a and b is understood the vector v
given by

ev =


det
[

a2 b2
a3 b3

]
det
[

a3 b3
a1 b1

]
det
[

a1 b1
a2 b2

]

 (10-37)

The cross product has a geometric significance. Consider Figure 10.9 and the following
theorem:
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v

ba

p

x

b

a

Figure 10.9: Geometry of the cross-product

Theorem 10.57 The Area of a Triangle by the Cross Product

For two linearly independent vectors a and b that form the angle v with each other,
the cross product a× b satisfies

1. a× b is orthogonal to both a and b .

2. |a× b| = 2 ·Area(4(p, a, b)) .

3. The vector set (a, b, a× b) follows the right hand rule: seen from the tip of a× b
the direction from a to b is counter-clockwise.

Definition 10.58 Scalar Triple Product

The scalar triple product [a, b, c] of the vectors ea =

 a1
a2
a3

, eb =

 b1
b2
b3

 and ec =

 c1
c2
a3


is defined by:

[a, b, c] = (a× b) · c
= (c1(a2b3 − a3b2) + c2(a3b1 − a1b3) + c3(a1b2 − a2b1)

= det

 a1 b1 c1
a2 b2 c2
a3 b3 c3


= det ([ea eb ec]) .

(10-38)
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10.8.4 Geometric Interpretation of the Determinant of a 3× 3 Matrix

From elementary Euclidean space geometry we know that the volume of a tetrahe-
dron is one third of the area of the base times the height. Consider the tetrahedron
� = �(p, a, b, c) spanned by the vectors a, b and c drawn from the point p, in Figure
10.10. The area of the base, 4(p, a, b) has been determined in the second part of Theo-

Figure 10.10: A tetrahedron spanned by three vectors in 3-space

rem 10.57.

The height can then be determined as the scalar product of the third edge vector c with
a unit vector, perpendicular to the base triangle.

But a × b is exactly perpendicular to the base triangle (because the cross product is
perpendicular to the edge vectors of the base triangle, see part 2 of Theorem (10.57), so
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we use this:

Vol(�(p, a, b, c)) = |1
3

Area(4(p, a, b))
(a× b) · c
|a× b| |

=
1
6
|(a× b) · c|

(10-39)

where we have used part 2 of Theorem 10.57.

By comparing this to the definition of scalar triple product, see 10.58, we now get the
volume of a tetrahedron written in ’determinant-form’:

Theorem 10.59 Volume of a Tetrahedron as a Scalar Triple Product

The volume of the tetrahedron � = �(p, a, b, c) is:

Vol(�(p, a, b, c)) =
1
6
|det ([a b c]) | . (10-40)

A tetrahedron has the volume 0, is collapsed, exactly when the determinant in (10-40) is
0, and this occurs exactly when one of the vectors can be written as a linear combination
of the two others (why is that?).

Definition 10.60 Regular Tetrahedron

A regular tetrahedron is a tetrahedron that has a proper volume, that is a volume,
that is strictly greater than 0.

Exercise 10.61

Let A denote a (2× 2)-matrix with the column vectors a and b:

A = [ a b ] . (10-41)

Show that the determinant of A is 0 if and only if the column vectors a and b are linearly
dependent in R2.
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Exercise 10.62

Let A denote a (3× 3)−matrix with the column vectors a, b, and c:

A = [ a b c ] . (10-42)

Show, that the determinant of A is 0 if and only if the column vectors a, b and c constitute a
linearly dependent set of vectors in R3.

Exercise 10.63

Use the geometric interpretations of the determinant above to show the following
Hadamard’s inequality for (2× 2)−matrices and for (3× 3)−matrices (in fact the inequality
is true for all square matrices):

(det(A))2 ≤
n

∏
j

(
n

∑
i

a2
ij

)
. (10-43)

When is the equality sign valid in (10-43)?
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