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eNote 6

Systems of Linear Equations

(Updated 24.9.2021 David Brander)

6.1 Linear Equations

Remark 6.1 The Common Notion L

Defnitions and rules in this eNote are valid both for the real numbers R and the
complex numbers C . The set of real numbers and the set of complex numbers are
examples of fields. Fields have common calculation rules concerning elementary
arithmetic rules (the same rules as those for C described in Theorem 1.12 in eNote
1). In the following when we use the symbol L it means that the notion is valid
both for the set of real numbers and for the set of complex numbers.

A linear equation with n unknowns x1, x2, . . . xn is an equation of the form

a1 · x1 + a2 · x2 + . . . + an · xn = b . (6-1)

The numbers a1, a2, . . . , an are called the coefficients and the number b is, in this con-
text, called the right hand side. The coefficients and the right hand side are considered
known in contrast to the unknowns. The equation is called homogeneous if b = 0, else
inhomogeneous.
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Definition 6.2 Solution to a Linear Equation

By a solution to the equation

a1 · x1 + a2 · x2 + . . . + an · xn = b . (6-2)

we shall understand an n-tuple x = (x1, x2, . . . , xn) ∈ Ln that by substitution into
the equation makes the left hand side of the equation equal to the right hand side.

By the general solution or just the solution set we understand the set of all solutions
to the equation.

Example 6.3 The Equation for a Straight Line in the Plane

An example of a linear equation is the equation for a straight line in the (x, y)-plane:

y = 2 x + 5 . (6-3)

Here y is isolated on the left hand side and the coefficients 2 and 5 have well known geomet-
rical interpretations. But the equation could also be written

−2 x1 + 1 x2 = 5 (6-4)

where x and y are substituted by the more general names for unknowns, x1 and x2, and the
equation is of the form (6-1).

The solution set for the equation (6-3) is of course the coordinate set for all points on the line
- by substitution they will satisfy the equation in contrast to all other points!

Example 6.4 Trivial and Inconsistent Equations

The linear equation
0x1 + 0x2 + 0x3 + 0x4 = 0 ⇔ 0 = 0 (6-5)

where all coefficients and the right hand side are 0, is an example of a trivial equation. The
solution set of the equation consists of all x = (x1, x2, x3, x4) ∈ L4.

If all the coefficients of the equation are 0 but the right hand side is non-zero, the equation is
an inconsistent equation, that is, an equation without a solution. An example is the equation

0x1 + 0x2 + 0x3 + 0x4 = 1 ⇔ 0 = 1 . (6-6)
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When you investigate linear equations, you can use the usual rule of conversion for
equations: The set of solutions for the equation is not changed if you add the same
number to both sides of the equality sign, and you do not change the solution set if you
multiply both sides of the equality sign by a non-zero constant.

All linear equations that are not inconsistent and which contain more than one solution,
have infinitely many solutions. The following example shows how the solution set in
this case can be written.

Example 6.5 Infinitely Many Solutions in Standard Parameter Form

We consider an inhomogeneous equation with three unknowns:

2 x1 − x2 + 4 x3 = 5 . (6-7)

By substitution of x1 = 1, x2 = 1 and x3 = 1 into the equation (6-7) we see that x = (1, 1, 1) is
a solution. But by this we have not found the general solution, because x = ( 1

2 , 0, 1) is also a
solution. How can we describe the complete set of solutions?

First we isolate x1:
x1 = 5

2 +
1
2 x2 − 2 x3 . (6-8)

To every choice of x2 and x3 corresponds exactly one x1. For example, if we set x2 = 1 and
x3 = 4, then x1 = −5. This means that the 3-tuple (−5, 1, 4) is a solution. Therefore we
can consider x2 and x3 free parameters that together determine the value of x1. Therefore we
rename x2 and x3 to the parameter names s and t, respectively: s = x2 and t = x3. Then x1

can be expressed as:
x1 = 5

2 +
1
2 x2 − 2 x3 = 5

2 +
1
2 s− 2 t . (6-9)

Now we can write the general solution to (6-7) in the following standard parameter form:

x =

 x1

x2

x3

=
 5

2
0
0

+ s ·

 1
2
1
0

+ t ·

−2
0
1

 with s, t ∈ L . (6-10)

Note that the parameter form of the middle equation x2 = 0 + s · 1 + t · 0 only expresses the
renaming x2 → s. Similarly, the last equation only expresses the renaming x3 → t.
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If we consider the equation (6-7) to be an equation for a plane in space, then
the equation (6-10) is a parametric representation for the same plane. The first
column on the right hand side is the initial point in the plane, and the two last
columns are directional vectors for the plane. This is elaborated in the eNote 10
Geometric Vectors.

6.2 A System of Linear Equations

A system of linear equations consisting of m linear equations with n unknowns is writ-
ten in the form

a11 · x1 + a12 · x2 + . . . + a1n · xn = b1
a21 · x1 + a22 · x2 + . . . + a2n · xn = b2

...
am1 · x1 + am2 · x2 + . . . + amn · xn = bm

(6-11)

The system has m rows, each of which contains an equation. The n unknowns, denoted
x1, x2, . . . xn , are present in each of the m equations (unless some of the coefficients
are zero, and we choose not to write down the zero terms). The coefficient of xj in the
equation in row number i is denoted aij. The system is termed homogeneous if all the m
right hand sides bi are equal to 0, otherwise inhomogeneous.

Definition 6.6 Solution of System of Linear Equations

By a solution to the the system of linear equations

a11 · x1 + a12 · x2 + . . . + a1n · xn = b1
a21 · x1 + a22 · x2 + . . . + a2n · xn = b2

...
am1 · x1 + am2 · x2 + . . . + amn · xn = bm

(6-12)

we understand an n-tuple x = (x1, x2, . . . xn) ∈ Ln which by substitution into all of
the m linear equations satisfies the equations, i.e. makes the left hand side of each
equal to the right hand side.

By the general solution or just the solution set we understand the set of all solutions
to the system. A single solution is often termed a particular solution.
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Example 6.7 A Homogeneous System of Linear Equations

A homogeneous system of linear equations consisting of two equations with four unknowns
is given by:

x1 + x2 + 2 x3 + x4 = 0
2 x1 − x2 − x3 + x4 = 0

(6-13)

We investigate whether the two 4-tuples x = (1, 1, 2,−6) and y = (3, 0, 1,−5) are particular
solutions to the equations (6-13). Substituting x into the left hand side of the system we get

1 + 1 + 2 · 2− 6 = 0
2 · 1− 1− 2− 6 = −7

(6-14)

Because the left hand side is equal to the given right hand side 0 in the first of these equations,
x is only a solution to the first of the two equations. Therefore x is not a solution to the system.

Substituiting y we get
3 + 0 + 2 · 1− 5 = 0
2 · 3− 0− 1− 5 = 0

(6-15)

Since in both equations the left hand side is equal to the right hand side 0 , y is a solution to
both of the equations. Therefore y is a particular solution to the system.

The solution set to a system of linear equations is the intersection of the solu-
tion sets for all the equations comprising the system.

6.3 The Coefficient Matrix and the Augmented Matrix

When we investigate a system of linear equations it is often convenient to use matrices.
A matrix is a rectangular array consisting of a number of rows and columns. As an
example the matrix M given by

M =

[
1 0 5
8 3 2

]
, (6-16)

has two rows and three columns. The six elements are termed the elements of the ma-
trix. The diagonal of the matrix consists of the elements with equal row and column
numbers. In M the diagonal consists of the elements 1 and 3.
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By the coefficient matrix A to the system of linear equations (6-11) we understand the ma-
trix whose first row consists of the coefficients in the first equation, whose second row
consists of the coefficients in the second equation, etc. In short, the following matrix
with m rows and n columns:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 (6-17)

The augmented matrix T of the system is constructed by adding a new column to the
coefficient matrix consisting of the right hand sides bi of the system. Thus T consists of
m rows and n + 1 columns. If we collect the right hand sides bi into a column vector b,
which we denote the right hand side of the system, T is composed as follows, where the
vertical line symbolizes the equality sign of the system:

T =
[

A b
]
=


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

 (6-18)

The vertical line in front of the last column in (6-18) has only the didactical
function to create a clear representation of the augmented matrix. One can
chose to leave out the line if in a given context this does not lead to misunder-
standings.

Example 6.8 Coefficient Matrix, Right Hand Side and Augmented Matrix

In the following system of linear equations with 3 equations and 3 unknowns

−x2 + x3 = 2
2x1 + 4x2 − 2x3 = 2
3x1 + 4x2 + x3 = 9

(6-19)

we have

A =

 0 −1 1
2 4 −2
3 4 1

 , b =

 2
2
9

 and T =

 0 −1 1 2
2 4 −2 2
3 4 1 9

 (6-20)

Notice that the 0 that is placed in the top left position in A and T, denotes that the coefficient
of x1 in the uppermost row of the system is 0.
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The clever thing about a coefficient matrix (and an augmented matrix) is that
we do not need to write down the unknowns. The unique position of the
coefficients in the matrix means that we are sure of which of the unknowns
any single particular coefficient belongs to. Thus we have removed redundant
symbols!

6.4 Row Reduction of Systems of Linear Equations

Systems or linear equations can be reduced, that is, made simpler using a method called
Gaussian elimination. The method has several versions, and the special variant used in
these eNotes goes by the name Gauss-Jordan elimination . The algebraic basis for all
variants is that you can reshape a system of linear equations by so-called row operations
without thereby changing the solution set for the system. When a system of equations
is reduced as much as possible it is usually easy to read it and to evaluate the solution
set.

Theorem 6.9 Row Operations

The solution set of a system of linear equations is not altered if the system is trans-
formed by any of the following three row operations:

ro1: Let two of the equations swap rows.

ro2: Multiply one of the equations by a non-zero constant.

ro3: To a given equation add one of the other equations multiplied by a constant.

Here we introduce a short notation for each of the three row operations:

ro1: Ri ↔ Rj : The equation in row i is swapped with the equation in row j.

ro2: k · Ri : The equation in row i is multiplied by k.

ro3: Rj + k · Ri : Add the equation in row i, multiplied by k, to the equation in row j.

In the following example we test the three row operations.
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Example 6.10 Row Operations

An example of ro1: Consider the system of equations below to the left. We swap two equa-
tions in the two rows thus performing R1 ↔ R2 .

x1 + 2x2 = −3
x1 + x2 = 0

→ x1 + x2 = 0
x1 + 2x2 = −3

(6-21)

The system to the right has the same solution set as the system on the left.

An example of ro2: Consider the system of equations below to the left. We multiply the
equation in the second row by 5, thus performing 5 · R2 :

x1 + 2x2 = −3
x1 + x2 = 0

→ x1 + 2x2 = −3
5 x1 + 5 x2 = 0

(6-22)

The system to the right has the same solution set as the system on the left.

An example of ro3: Consider the system of equations below to the left. To the equation in the
second row we add the equation in the first row multiplied by 2, thus performing R2 + 2 · R1 :

x1 + 2x2 = −3
x1 + x2 = 0

→ x1 + 2x2 = −3
3x1 + 5x2 = −6

(6-23)

The system to the right has the same solution set as the system on the left.

The arrow, →, which is used in the three examples indicates that one or more row
operations have taken place.

Proof

The first part of the proof of 6.9 is simple: Since the solution set of a system of equations is
equal to the intersection F of the solution sets for the various equations comprising the system,
F is not altered by the order of the equations being changed. Therefore ro1 is allowed.

Since the solution set of a given equation is not altered when the equation is multiplied by
a constant k 6= 0, F will not be altered if one of the equations is replaced by the equation
multiplied by a constant different from 0. Therefore ro2 is allowed.

Finally consider a system of linear equations A with n unknowns x = (x1, x2, . . . xn). We
write the left hand side of an equation in A as L(x) and the right hand side as b . Now
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we perform an arbitrary row operation of the type ro3 in the following way: An arbitrary
equation L1(x) = b1 is multiplied by an arbitrary number k and is then added to an arbitrary
different equation L2(x) = b2 . This produces a new equation L3(x) = b3 where

L3(x) = L2(x) + k L1(x) and b3 = b2 + k b1 .

We now show that the system of equations B that emerges as a result of replacing L2(x) = b2

in A by L3(x) = b3 has the same solution set as A, and that ro3 thus is allowed. First, assume
that x0 is an arbitrary solution to A . Then it follows from the transformation rules for a linear
equation that

k L1(x0) = k b1

and further that
L2(x0) + k L1(x0) = b2 + k b1 .

From this it follows that L3(x0) = b3 , and that x0 is a solution to B. Assume vice versa that
x1 is an arbitrary solution to B . Then it follows that

−k L1(x1) = −k b1

and further that
L3(x1)− k L1(x1) = b3 − k b1 .

This means that L2(x1) = b2 , and that x1 also is a solution to A. In sum we have shown that
ro3 is allowed.

�

From 6.9 follows directly:

Corollary 6.11

The solution set of a system of linear equations is not altered if the system is trans-
formed an arbitrary number of times, in any order, by the three row operations.

We are now ready to use the three row operations for the row reduction of systems
of linear equations. In the following example we follow the principles of Gauss-Jordan
elimination, and a complete description of the method follows in subsection 6.5.
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Example 6.12 Gauss-Jordan Elimination

Consider below, to the left, a system of linear equations, consisting of three equations with
the three unknowns x1, x2 and x3. On the right the augmented matrix for the system is written:

−x2 + x3 = 2

2x1 + 4x2 − 2x3 = 2

3x1 + 4x2 + x3 = 9

T =

 0 −1 1 2
2 4 −2 2
3 4 1 9

 (6-24)

The purpose of reduction is to achieve, by means of row operations, the following situation:
x1 is the only remaining part on left hand side of the upper equation , x2 is the only one on the
left hand side of the middle equation and x3 is the only one on the left hand side of the lower
equation. If this is possible then the system of equations is not only reduced but also solved!
This is achieved in a series of steps taken in accordance with the Gauss-Jordan algorithm.
Simultaneously we look at the effect the row operations have on the augmented matrix.

First we aim to have the topmost equation comprise x1, and to have the coefficient of this x1

be 1. This can be achieved in two steps. We swap the two top equations and multiply the
equation now in the top row by 1

2 . That is,

R1 ↔ R2 and
1
2
· R1 :

x1 + 2x2 − x3 = 1

−x2 + x3 = 2

3x1 + 4x2 + x3 = 9

 1 2 −1 1
0 −1 1 2
3 4 1 9

 (6-25)

Now we remove all other occurrences of x1. In this example it is only one occurrence, i.e. in
row 3. This is achieved as follows: we multiply the equation in row 1 by the number −3 and
add the product to the equation in row 3, in short

R3 − 3 · R1 :

x1 + 2x2 − x3 = 1

−x2 + x3 = 2

−2x2 + 4x3 = 6

 1 2 −1 1
0 −1 1 2
0 −2 4 6

 (6-26)

We have now achieved that x1 only appears in row 1 . There it must stay! The work on x1

is finished. This corresponds to the fact that at the top of the first column of the augmented
matrix there is 1 and directly below it only 0’s. This means that work on the first column is
finished !

The next transformations aim at ensuring that the unknown x2 will be represented only in
row 2 and nowhere else. First we make sure that the coefficient of x2 in row 2 switches
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coefficient from −1 to 1 by use of the operation

(−1) · R2 :

x1 + 2x2 − x3 = 1

x2 − x3 = −2

−2x2 + 4x3 = 6

 1 2 −1 1
0 1 −1 −2
0 −2 4 6

 (6-27)

We now remove the occurrences of x2 from row 1 and row 3 with the operations

R1 − 2 · R2 and R3 + 2 · R2 :

x1 + x3 = 5

x2 − x3 = −2

2x3 = 2

 1 0 1 5
0 1 −1 −2
0 0 2 2

 (6-28)

Now the work with x2 is finished, which corresponds to the fact that in row 2 in the aug-
mented matrix the number in the second column is 1, all the other numbers in the second
column being 0. This column must not be altered by subsequent operations.

Finally we wish that the unknown x3 is represented in row 3 by the coefficient 1 and that x3

is removed from row 1 and row 2. This can be accomplished in two steps. First

1
2
· R3 :

x1 + x3 = 5

x2 − x3 = −2

x3 = 1

 1 0 1 5
0 1 −1 −2
0 0 1 1

 (6-29)

Then
R1 − R3 and R2 + R3 :

x1 = 4

x2 = −1

x3 = 1

 1 0 0 4
0 1 0 −1
0 0 1 1

 (6-30)

Now x3 only appears in row 3. This corresponds to the fact that in column 3 in the third row
of the augmented matrix we have 1, each of the other elements in the column being 0. We
have now completed a total reduction of the system, and from this we can conclude that there
exists exactly one solution to the system viz :

x = (x1, x2, x3) = (4,−1, 1). (6-31)
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Let us remember what a solution is: an n-tuple that satisfies all the equations in
the system! Let us prove that formula (6-31) actually is a solution to equation
(6-24):

−(−1) + 1 = 2
2 · 4 + 4 · (−1)− 2 · 1 = 2

3 · 4 + 4 · (−1) + 1 = 9

As expected all three equations are satisfied!

In (6-30) after the row operations the augmented matrix of the system of linear equations
has achieved a form of special beauty with three so-called leading 1’s in the diagonal
and zeros everywhere else. We say that the transformed matrix is in reduced row echelon
form. It is not always possible to get the simple representation shown in (6-30). Some-
times the leading 1 in the next row is found more than one column to the right, as one
moves down. The somewhat complex definition follows below.

Definition 6.13 Reduced Row Echelon Form

A system of linear equations is denoted to be in reduced row echelon form, if the
corresponding augmented matrix fulfills the following four conditions:

1. The first number in a row that is not 0, is a 1. This is called the leading 1 or the
pivot of the row.

2. In two consecutive rows which both contain a pivot, the upper row’s leading
1 is further to the left than the leading 1 in the following row.

3. In a column with a leading 1, all other elements are 0.

4. Any rows with only 0’s are placed at the bottom of the matrix.
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Example 6.14 Reduced Row Echelon Form

Consider the three matrices

A =

 1 0 0
0 1 0
0 0 1

 , B =

 1 2 0
0 0 1
0 0 0

 og C =

 1 3 1
0 0 0
0 0 0

 . (6-32)

The three matrices shown are all in row reduced echelon form. In A all the leading 1’s are
nicely placed in the diagonal. B has only leading two leading 1’s and you have to go two steps
to the right to go from the first to the second step. In C there is only one leading 1.

Example 6.15

None of the following four matrices is in reduced row echelon form because each violates
exactly one of the rules in the definition 6.13 – which, is left to reader to figure out!

A =

 1 1 0
0 1 0
0 0 1

 , B =

 0 0 0
1 2 0
0 0 1

 , C =

 1 0 0
0 2 1
0 0 0

 and D =

 1 0 0
0 0 1
0 1 0

 . (6-33)

Note the following important theorem about the relationship between a matrix on the
one hand, and the reduced row echelon form of the same matrix produced through the
use of row operations, on the other.

Theorem 6.16 Reduced Row Echelon Form

If a given matrix M is transformed by two different sequences of row operations into
a reduced row echelon form, then the two resulting reduced row echelon forms are
identical.

The unique reduced row echelon form a given matrix M can be transformed into
this way is termed the reduced row echelon form, and given the symbol rref(M).
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Proof

We use the following model for the six matrices that are introduced in the course of the proof:

A
f1←− M

f2−→ B
↓

A1
f1←− M1

f2−→ B1

(6-34)

Suppose a matrix M has been transformed, by two different series of row operations f1 and
f2, into two different reduced row echelon forms A and B . Let column number k be the first
column of A and B where the two matrices differ from one another. We form a new matrix M1

from M in the following way. First we remove all the columns in M whose column numbers
are larger than k. Then we remove just the columns in M whose column numbers are less
than k , and have the same column numbers as a column in A (and thus B ) which does not
contain a leading 1.

Now we transform M1 by the series of row operations f1 and f2 , and the resulting matrices
formed hereby are called A1 and B1, respectively. Then A1 necessarily will be the same matrix
that would result if we remove all the columns from A, similar to those we took away from M
to produce M1. And the same relationship exists between B1 and B. A1 and B1 will therefore
have a leading 1 in the diagonal of all columns apart from the last, which is the first column
where the two matrices are different from one another. In this last column there are two
possibilities: Either one of the matrices has a leading 1 in this column or neither of them has.
An example of how the situation in the first case could be is:

A1 =

 1 0 0
0 1 0
0 0 1

 B1 =

 1 0 0
0 1 2
0 0 0

 (6-35)

We now interpret M1 as the augmented matrix for a system of linear equations L . Both A1

and B1 will then represent a totally reduced system of equations with the same solution set
as L . However, this leads to a contradiction since one of the totally reduced systems is seen
to be inconsistent due to one of the equations now being invalid and the other will have just
one solution. We can therefore rule out that one of A1 and B1 contains a leading 1 in the last
column.

We now investigate the other possibility, that neither of A1 and B1 contains a leading 1 in the
last column. The situation could then be like this:

A1 =

 1 0 1
0 1 3
0 0 0

 B1 =

 1 0 1
0 1 2
0 0 0

 (6-36)

Both the totally reduced system of equations as represented by A1 , and that which is
represented by B1 , will in this case have exactly one solution. But when the last column
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is different in the two matrices the solution for A1’s system of equations will be different
from the solution for B1’s system of equations, whereby we again have ended up in a
contradiction.

We conclude that the assumption that M might be transformed into two different reduced
row echelon forms cannot be true. Hence, to M corresponds a unique reduced row echelon
form: rref(M).

�

From Theorem 6.16 it is relatively easy to obtain the next result about matrices that can
transformed into each other through row operations:

Corollary 6.17

If a matrix M has been transformed by an arbitrary sequence of row operations into
the matrix N, then

rref(N) = rref(M). (6-37)

Proof

Let s be a sequence of row operations that transforms the matrix M to the matrix N, and
let t be a sequence of row operations that transforms the the matrix N to rref(N). Then the
sequence of row operations consisting of s followed by t , transform M to rref(N). But since
M in accordance with 6.16 has a unique reduced row echelon form, rref(M) must be equal to
rref(N).

�

If, in the preceding corollary, we interpret M and N as the augmented matrices for two
systems of linear equations, then it follows directly from definition (6.13) that:
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Corollary 6.18

If two systems of linear equations can be transformed into one another by the use of
row operations, then they are identical in the reduced row echelon form (apart from
possible trivial equations).

6.5 Gauss-Jordan Elimination

We are now able to precisely introduce the method of elimination that is applied in these
eNotes.

Definition 6.19 Gauss-Jordan Elimination

A system of linear equations is totally reduced by Gauss-Jordan elimination when
the corresponding augmented matrix after the use of the three row operations (see
theorem 6.9) is brought into the reduced row echelon form by the following proce-
dure:

We proceed from left to right : First we treat the first column of the aug-
mented matrix so that it does not conflict with the reduced row echelon
form, then the second column is treated so as not to conflict with the re-
duced row echelon form and so on, as far as and including the last column
in the augmented matrix .

This is always possible!

When you are in the process of reducing systems of linear equations, you are
free to deviate from the Gauss-Jordan method if it is convenient in the situation
at hand. If you have achieved a reduced row echelon form by using other
sequences of row operations, it is the same form that would have been obtained
by using the Gauss-Jordan method strictly. This follows from corollary 6.18.

In Example 6.12 it was possible to read the solution from the totally reduced system of
linear equations. In the following main example the situation is a bit more complicated
owing to the fact that the system has infinitely many solutions.
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Example 6.20 Gauss-Jordan Elimination

We want to reduce the following system of four linear equations in five unknowns:

x1 + 3x2 + 2x3 + 4x4 + 5x5 = 9

2x1 + 6x2 + 4x3 + 3x4 + 5x5 = 3

3x1 + 8x2 + 6x3 + 7x4 + 6x5 = 5

4x1 + 14x2 + 8x3 + 10x4 + 22x5 = 32

(6-38)

We write the augmented matrix for the system:

T =


1 3 2 4 5 9
2 6 4 3 5 3
3 8 6 7 6 5
4 14 8 10 22 32

 (6-39)

Below we reduce the system using three row operations. This we will do by only looking at
the transformations of the augmented matrix!

R2 − 2 · R1 , R3 − 3 · R1 and R4 − 4 · R1 :
1 3 2 4 5 9
0 0 0 −5 −5 −15
0 −1 0 −5 −9 −22
0 2 0 −6 2 −4

 (6-40)

Now we have completed the treatment of the first column, because we have a leading 1 in
the first row and only 0’s on the other entries in the column.

R2 ↔ R3 and (−1) · R2 :
1 3 2 4 5 9
0 1 0 5 9 22
0 0 0 −5 −5 −15
0 2 0 −6 2 −4

 (6-41)

R1 − 3 · R2 and R4 − 2 · R2 :
1 0 2 −11 −22 −57
0 1 0 5 9 22
0 0 0 −5 −5 −15
0 0 0 −16 −16 −48

 (6-42)

The work on the second column is now completed. Now a deviation from the standard
situation follows, where leading 1’s are established in the diagonal, because it is not possible
to produce a leading 1 as the third element in the third row. We are not allowed to swap
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row 1 and row 3, because by doing so the first column would be changed in conflict with
the principle that the treatment of the first column is complete. This means that we have
also completed the treatment of the third column (the number 2 in the top row cannot be
removed). To continue the reduction we move on to the fourth element in row three, where
it is possible to provide a leading 1.

− 1
5 · R3 :

1 0 2 −11 −22 −57
0 1 0 5 9 22
0 0 0 1 1 3
0 0 0 −16 −16 −48

 (6-43)

R1 + 11 · R3 , R2 − 5 · R3 and R4 + 16 · R3 :
1 0 2 0 −11 −24
0 1 0 0 4 7
0 0 0 1 1 3
0 0 0 0 0 0

 (6-44)

Now the Gauss-Jordan elimination has ended and we can write the totally reduced system
of equations:

1x1 + 0x2 + 2x3 + 0x4 − 11x5 = −24

0x1 + 1x2 + 0x3 + 0x4 + 4x5 = 7

0x1 + 0x2 + 0x3 + 1x4 + 1x5 = 3

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 0

(6-45)

First, we note that the original system of equations has actually been reduced (made easier)
by the fact that many of the coefficients of the equation system are replaced by 0’s. But
moreover the system with four equations can now be replaced by a system consisting of
only three equations. The last row is indeed a trivial equation that has the whole L5 as
its solution set. Therefore, the solution set of the system system will not change if the last
equation is omitted in the reduced system (since the intersection of the solutions sets of all
four equations equals that of the solution sets from the first three equations alone). Quite
simply , we can therefore write the totally reduced system of equations as:

x1 + 2x3 − 11x5 = −24

x2 + 4x5 = 7

x4 + x5 = 3

(6-46)

But how do we proceed from the reduced system of equations to writing down the solution
set in a comprehensible form? We shall return to this example later, see Example 6.30. Before
that we need to introduce the concept of rank.



eNote 6 6.6 THE CONCEPT OF RANK 19

6.6 The Concept of Rank

In the example 6.20 a system of linear equations consisting of 4 equations with 5 un-
knowns has been totally reduced, see equation (6-46). Only three equations are left,
because the trivial equation 0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 0 has been left out since it
only expresses the fact that 0 = 0. That the reduced system of equations contains a
trivial equation means that the reduced row echelon form of the the augmented matrix
contains a 0-row, as in equation (6-44). This leads to the following definition.

Definition 6.21 Rank

By the rank ρ of a matrix we understand the number of rows that are not 0-rows, in
the reduced row echelon form of the matrix. The rank thereby corresponds to the
number of leading 1’s in the reduced row echelon form of the matrix.

From the definition 6.21 and corollary 6.18 together with corollary 6.17 we obtain:

Theorem 6.22 Rank and Row Operations

Two matrices that can be transformed into each other by row operations have the
same rank.

The rank gives the least possible number of non-trivial equations that a system
of equations can be transformed into using row operations. You can never
transform a system of linear equations through row operations in such a way
that it will contain fewer non-trivial equations than it does when it is totally
reduced. This is a consequence of theorem 6.22.

Example 6.23 The Rank of Matrices

A matrix M with 3 rows and 4 columns is brought into the reduced row echelon form as
follows:

M =

 3 1 7 −2
−1 −3 3 1

2 3 0 −3

 → rref(M) =

 1 0 3 0
0 1 −2 0
0 0 0 1

 (6-47)
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Since rref(M) does not contain 0-rows, ρ(M) = 3.

A matrix N with 5 rows and 3 columns is brought into reduced row echelon form like this:

N =


2 2 1
−2 −5 −4

3 1 −7
2 −1 −8
3 1 −7

 → rref(N) =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 (6-48)

Since rref(N) contains three rows that are not 0-rows, ρ(N) = 3.

If we interpret M and N as augmented matrices for linear systems of equations we see that for
both coefficient matrices the rank is 2, this is less than the ranks of the augmented matrices.

We now investigate the relationship between rank and the number of rows and columns.
First we notice that from the definition of 6.21 it follows that the rank of a matrix can
never be larger than the number of matrix rows.

In Example 6.23 the rank of M equals the number of rows in M, while the rank of N is
less than the number of rows in N.

Analogously the rank of a matrix cannot be larger than the number of columns. The
rank is in fact equal to the number of leading 1’s in the reduced row echelon form . And
if the echelon form of the matrix contains more leading 1’s than there are columns, then
there must be at least one column containing more than one leading 1. But this contra-
dicts condition number 3 in the definition 6.13.

In the example 6.23 the rank of M is less than the number of columns in M, while the
rank of N equals the number of columns in N.

We summarize the above observations in the following theorem:

Theorem 6.24 Rank, Rows and Columns

For a matrix M with m rows and n columns we have that

ρ(M) ≤ min {m, n} . (6-49)
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6.7 From Reduced Row Echelon Form to the Solution Set

Sometimes it is possible to write down the solution set for a system of linear equations
immediately when the corresponding augmented matrix is brought into its reduced
echelon form. This applies when the system has no solution or when the system has
exactly one solution. If the system has infinitely many solutions, work is needed in
order to be able to characterize the solution set. This can be achieved by writing the
solution in a standard parametric form. The concept of rank proves well suited to give
an instructive overview of the classes of solution sets.

6.7.1 When ρ(A) < ρ(T)

The augmented matrix T for a system of linear equations has the same number of rows
as the coefficient matrix A but one column more, which contains the right hand sides
of the equations. There are two possibilities. Either ρ(T) = ρ(A), or ρ(T) = ρ(A) +
1, corresponding to the fact that the last column in rref(T) contains a leading 1. The
consequence of the last possibility is investigated in Example 6.25.

Example 6.25 Inconsistent Equation (No Solution)

The augmented matrix for a system of linear equations consisting of three equations in two
unknowns is brought into reduced row echelon form

rref(T) =

 1 −2 0
0 0 1
0 0 0

 (6-50)

The system is thereby reduced to
x1 − 2x2 = 0

0x1 + 0x2 = 1

0x1 + 0x2 = 0

(6-51)

Notice that the equation in the second row is inconsistent and thus has no solutions. Because
the solution set for the system is the intersection of the solution sets for all the equations, the
system has no solutions at all.

Let us look at the reduced row echelon form of the coefficient matrix

rref(A) =

 1 −2
0 0
0 0

 (6-52)
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We note that ρ(A) = 1. This is less than ρ(T) = 2, and this is exactly due to the inconsistency
of the equation in the reduced system of equations.

The considerations in example 6.25 can be generalized to the following theorem.

Theorem 6.26 When ρ(A) < ρ(T)

If a system of linear equations with coefficient matrix A and augmented matrix T
has

ρ(A) < ρ(T) , (6-53)

then the totally reduced system has an inconsistent equation. Therefore the system
has no solutions.

If rref(T) has a row of the form
[

0 0 · · · 0 1
]
, then the system has no solu-

tions.

Exercise 6.27

Determine the reduced rwo echelon form of the augmented matrix for the following system
of linear equations, and determine the solution set for the system.

x1 + x2 + 2x3 + x4 = 1

−2x1 − 2x2 − 4x3 − 2x4 = 3
(6-54)

6.7.2 When ρ(A) = ρ(T) = Number of Unknowns

Let n denote the number of unknowns in a given system of linear equations. Then by
the way the coefficient matrices are formed there must be n columns in A.

Further we assume that ρ(A) = n. Then rref(A) contains exactly n leading 1’s. There-
fore the leading 1’s must be placed in the diagonal in rref(A), and all other elements of
rref(A) are zero.
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Finally we assume that in the given example ρ(A) = ρ(T). Then the solution set can
be read directly from rref(T). The first row in rref(T) will correspond to an equation
where the first unknown has the coefficient 1 while all the other unknowns have the co-
efficient 0. Therefore the value of the first unknown is equal to to the last element in the
first row (the right hand side). Similarly with the other rows, row number i corresponds
to an equation where unknown number i is the only unknown, and therefore its value
is equal to the last element in row number i. Since each unknown there corresponds
to exactly one value, and since ρ(A) = ρ(T) we are certain that there is no inconsis-
tent equation in the given system of equations. Thus the given system of equations has
exactly one solution.

Example 6.28 Exactly One Solution

The augmented matrix for a system of linear equations consisting of three equations in two
unknowns has been brought onto the reduced row echelon form

rref(T) =

 1 0 −3
0 1 5
0 0 0

 (6-55)

Consider the reduced row echelon form of the coefficient matrix for the system

rref(A) =

 1 0
0 1
0 0

 (6-56)

This has a leading 1 in each column and 0 in all other entries. We further note that ρ(A) =

ρ(T) = 2.

From rref(T) we can write the totally reduced system of equations as

1x1 + 0x2 = −3

0x1 + 1x2 = 5

0x1 + 0x2 = 0

(6-57)

which shows that this system of equations has exactly one solution x = (x1, x2) = (−3, 5).

The argument given just before the example proves the following theorem:
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Theorem 6.29 When ρ(A) = ρ(T) = Number of Unknowns

If a linear system with coefficient matrix A and augmented matrix T has:

ρ(A) = ρ(T) = number of unknowns, (6-58)

then the system has exactly one solution, and this can be immediately read from
rref(T).

6.7.3 When ρ(A) = ρ(T) < the Number of Unknowns

We are now ready to resume the discussion of our main example 6.20, a system of linear
equations with 5 unknowns, for which we found the totally reduced system of equations
consisting of 3 non-trivial equations. Let us now find the solution set and investigate its
properties!

Example 6.30 Infinitely Many Solutions

In the example 6.20 the augmented matrix T for a system of linear equations with 4 equations
in 5 unknowns was reduced to

rref(T) =


1 0 2 0 −11 −24
0 1 0 0 4 7
0 0 0 1 1 3
0 0 0 0 0 0

 (6-59)

We see that ρ(A) = ρ(T) = 3, i.e. less than 5, the number of unknowns.

From rref(T) we can write the totally reduced system of equations

x1 + 2x3 − 11x5 = −24

x2 + 4x5 = 7

x4 + x5 = 3

(6-60)

The system has infinitely many solutions. For every choice of values for x3 and x5 we can
find exactly one new value for the other unknowns x1, x2 and x4. This can be made more
clear by isolating x1, x2 and x4 in the following way

x1 = −24− 2x3 + 11x5

x2 = 7− 4x5

x4 = 3− x5

(6-61)
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If we, for example, choose x3 = 1 and x5 = 2, we find the solution x = (x1, x2, x3, x4, x5) =

(−4, −1, 1, 1, 2). More generally, any choice of values for x3 and x5 will, in the same way,
produce a solution, whilst the other three variables are uniquely determined by the cohice.
Therefore we can consider x3 and x5 as free parameters that determine the value of the three
other unknowns, and therefore on the right hand side we rename x3 and x5 the parameter
names t1 and t2, respectively. Then we can write the solution set as:

x1 = −24− 2t1 + 11t2

x2 = 7− 4t2

x3 = t1

x4 = 3− t2

x5 = t2

(6-62)

or more clearly in the standard parameter form:

x =


x1

x2

x3

x4

x5

=

−24

7
0
3
0

+ t1


−2

0
1
0
0

+ t2


11
−4

0
−1

1

 where t1, t2 ∈ L. (6-63)

With geometry-inspired wording we term the vector (−24, 7, 0, 3, 0) the initial point of the
solution set and the two vectors (−2, 0, 1, 0, 0) and (11, −4, 0, −1, 1) its directional vectors.
Letting x0, v1 and v2 denote the initial point, and the directional vectors, respectively, we can
write the parametric representation in this way:

x = x0 + t1v1 + t2v2 hvor t1, t2 ∈ L. (6-64)

Since the solution set has two free parameters corresponding to two directional vectors, we
say that it has a double -infinity of solutions.

Line 3 and 5 in (6-63) only express that x3 = t1 and x5 = t2.

Let us, inspired by example 6.30, formulate a general method for changing the solution
set to standard parametic form from the totally reduced system of equations:
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Method 6.31 From the Augmented Matrix to the Solution in Standard
Parameter Form

We consider a system of linear equations with n unknowns with the coefficient ma-
trix A and the augmented matrix T. In addition we assume

ρ(A) = ρ(T) = k < n. (6-65)

The solution set of the system is brought into standard parametric form in this way:

1. We find rref(T) and from this we write the totally reduced system of equations
(as is done in (6-60)).

2. In each of the k non-trivial equations in the totally reduced system of equations
we isolate the first unknowns on the left hand side (as is done in (6-61)).

3. In this way we have isolated k different unknowns on the left hand side of the
total system. The other (n− k) unknowns, that are placed on the right hand
side are renamed the parameter names t1, t2, . . . , tn−k .

4. We can now write the solution set in standard parametic form:

x = (x1, x2, . . . , xn) = x0 + t1 v1 + t2 v2 + · · ·+ tn−k vn−k , (6-66)

where the vector x0 denotes the initial point of the parameter representation,
while v1, v2, . . . , vn−k are its directional vectors (as is done in (6-63)).

Notice that the numbers t1, t2, . . . , tn−k can be chosen freely. Regardless of the choice
equation (6-66) will be a valid solution. Therefore they are called free parameters.

If the algorithm of the Gauss-Jordan elimination has been followed perfectly,
one arrives at a certain initial point and a certain set of directional vectors for
the solution set, see equation (6-66). But the solution set can be written with
another choice for the initial point (if the system is inhomogeneous), and with
a different choice of directional vectors. However, the number of directional
vectors will always be (n− k).

Solution sets in which some of the unknowns have definite values are possible. In the
following example the free parameter only influences one of the unknowns. The other
two are locked:
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Example 6.32 Infinitely Many Solutions with a Free Parameter

For a given system of linear equations it is found that

rref(T) =
[

1 0 0 −2
0 0 1 5

]
(6-67)

We see that ρ(A) = ρ(T) = 2 < n = 3. Accordingly we have one free parameter. We write
the solution set as:

x =

 x1

x2

x3

=
−2

0
5

+ t

 0
1
0

 (6-68)

where t is a scalar that can be chosen freely.

In general you can prove the following theorem:

Theorem 6.33 When ρ(A) = ρ(T) < Number of Unknowns

If a system of linear equations with n unknowns and with the coefficient matrix A
and augment matrix T has

ρ(A) = ρ(T) = k < n (6-69)

Then the system has infinitely many solutions that can be written in standard pa-
rameter form with an initial point and (n− k) directional vectors.

6.8 On the Number of Solutions

Let us consider a system of three linear equations in two unknowns:

a1 · x + b1 · y = c1

a2 · x + b2 · y = c2

a3 · x + b3 · y = c3

(6-70)

We have previously emphasized that the solution set for a system of equations is the
intersection of the solution sets for each of the equations in the system. Let us now in-
terpret the given system of equations as equations for three straight lines in a coordinate
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system in the plane. Then the solution set corresponds to a set of points that are common
to all the three lines. In order to answer the question about “number” of solutions we
draw the different situations in Figure 6.1. In situation 2 two of the lines are parallel,

Figure 6.1: The six possible structures of the solutions for three linear equations in two
unknowns.

and in situation 3 all three lines are parallel. Therefore there are no points that are part
of all three lines in the situations 1, 2 and 3. In situation 5 two of the lines are identical
(the blue and the red line coincide in the purple line). Hence there is exactly one com-
mon point in the situations 4 and 5. In the situation 6 all the three lines coincide (giving
the black line). Therefore in this situation there are infinitely many common points.

The example with three equations in two unknowns illustrates the following theorem
which follows from our study of the solution sets in the previous section, see the theo-
rems 6.26, 6.29 and 6.33:

Theorem 6.34 Remark about the Number of Solutions

A system of linear equations either has no, exactly one, or infinitely many solutions.
There are no other possibilities.
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6.9 The Linear Structure of the Solution set

In this section we dig a little deeper into the question about the structure of the solution
set for systems of linear equations. It is particularly important to observe the corre-
spondence between the solution set for an inhomogeneous system of equations and the
corresponding homogeneous system of equations. We start by investigating the homogenous
system.

6.9.1 The Properties of Homogeneous Systems of Equations

A homogenous system of linear equations of m linear equations in n unknowns is writ-
ten in the form

a11 · x1 + a12 · x2 + . . . + a1n · xn = 0
a21 · x1 + a22 · x2 + . . . + a2n · xn = 0

...
am1 · x1 + am2 · x2 + . . . + amn · xn = 0

(6-71)

In the following theorem we describe an important property of the structure of the so-
lution set for homogeneous systems of linear equations.

Theorem 6.35 Solutions to a Homogeneous System of Linear Equations

Let Lhom denote the solution set of a homogeneous system of linear equations. Then
there exists at least one solution to the system, namely the zero or trivial solution. If

x = (x1, x2, . . . xn) and y = (y1, y2, . . . yn) (6-72)

are two arbitrary solutions, and k is an arbitrary scalar then both the sum

x + y = (x1 + y1, x2 + y2, . . . xn + yn) (6-73)

and the product
k · x = (k · x1, k · x2, . . . k · xn) (6-74)

belong to Lhom.
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Proof

An obvious property of the system (6-71) is that ρ(A) = ρ(T) (because the right hand side
consists of only zeros). Therefor the system has at least one solution - it follows from theorem
6.29. We can also immediately find a solution, viz. the zero vector, 0 ∈ Ln . That this is a
solution is evident when we replace all the unknowns in the system with the number 0, then
the system consists of m equations of the form 0 = 0.

Apart from this the theorem comprises two parts that are proved separately:

1. If
ai1x1 + ai2x2 + · · ·+ ainxn = 0 for every i = 1, 2, . . . , m (6-75)

and
ai1y1 + ai2y2 + · · ·+ ainyn = 0 for every i = 1, 2, . . . , m (6-76)

then by addition of the two equations and a following factorization with respect to the
coeficients we get

ai1(x1 + y1) + ai2(x2 + y2) + · · ·+ ain(xn + yn) = 0 for every i = 1, 2, . . . , m (6-77)

which shows that x + y is a solution.

2. If
ai1x1 + ai2x2 + · · ·+ ainxn = 0 for every i = 1, 2, . . . , m (6-78)

and k is an arbitrary scalar, then by multiplying both sides of the equation by k and a
following factorization with respect to the coefficients we get

ai1(k · x1) + ai2(k · x2) + · · ·+ ain(k · xn) = 0 for every i = 1, 2, . . . , m (6-79)

which shows that k · x is a solution.

�

Remark 6.36

If you take an arbitrary number of solutions from Lhom, multiply these by arbitrary
constants and add the products then the so-called linear combination of solutions
also is a solution. This is a consequence of theorem 6.35.
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6.9.2 Structural Theorem

We will now consider a decisive relation between an inhomogeneous system of linear
equations of the form

a11 · x1 + a12 · x2 + . . . + a1n · xn = b1
a21 · x1 + a22 · x2 + . . . + a2n · xn = b2

...
am1 · x1 + am2 · x2 + . . . + amn · xn = bm

(6-80)

and the corresponding homogeneous system of linear equations, by which we mean the equa-
tions (6-80) after all the right hand sides bi have been replaced by 0. The solution set
for the inhomogeneous system of equations is called Linhom and the solution set for the
corresponding homogeneous system of equations is called Lhom.

Theorem 6.37 Structural Theorem

If you have found just one solution (a so-called particular solution) x0 to an inho-
mogeneous sytem of linear equations, then Linhom can be found as the sum of x0 and
Lhom.

In other words
Linhom =

{
x = x0 + y y ∈ Lhom

}
. (6-81)

or in short
Linhom = x0 + Lhom. (6-82)

Proof

Note that the theorem contains two propositions. One is that the sum of x0 and an arbitrary
vector from Lhom belongs to Linhom. The other is that an arbitrary vector from Linhom can be
written as the sum of x0 and a vector from Lhom. We prove the two propositions separately:

1. Assume y ∈ Lhom. We want to show that

x = x0 + y = (x01 + y1, x02 + y2, . . . , x0n + yn) ∈ Linhom. (6-83)
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Since
ai1x01 + ai2x02 + · · ·+ ainx0n = bi for any i = 1, 2, . . . , m (6-84)

and
ai1y1 + ai2y2 + · · ·+ ainyn = 0 for any i = 1, 2, . . . , m (6-85)

then by addition of the two equations and a following factorization with respect to the
coeficients we get

ai1(x01 + y1) + · · ·+ ain(x0n + yn) = bi for any i = 1, 2, . . . , m (6-86)

which proves the proposition.

2. Assume x ∈ Linhom. We want to show that a vector y ∈ Lhom exists that fulfills

x = x0 + y. (6-87)

Since both x and x0 belong to Linhom we have that

ai1x1 + ai2x2 + · · ·+ ainxn = bi for any i = 1, 2, . . . , m (6-88)

and
ai1x01 + ai2x02 + · · ·+ ainx0n = bi for any i = 1, 2, . . . , m (6-89)

When we subtract the lower equation from the upper, we get after factorization

ai1(x1 − x01) + · · ·+ ain(xn − x0n) = 0 for any i = 1, 2, . . . , m (6-90)

which shows that the vector y defined by y = x − x0, belongs to Lhom and satisfies:
x = x0 + y.

�
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