eNote 5

The Number Spaces \mathbb{R}^n and \mathbb{C}^n

This eNote is about the real number space \mathbb{R}^n and the complex number space \mathbb{C}^n , which are essential building blocks in Linear Algebra.

Update: 23.09.21 David Brander

5.1 Number Spaces

III Remark 5.1 The Common Notion L

Defnitions and rules in this eNote are valid both for the real numbers \mathbb{R} and the complex numbers \mathbb{C} . The set of real numbers and the set of complex numbers are examples of *fields*. Fields have common calculation rules concerning elementary arithmetic rules (the same rules as those for \mathbb{C} described in Theorem 1.12 in eNote 1). In the following when we use the symbol \mathbb{L} it means that the notion is valid both for the set of real numbers and for the set of complex numbers.

 \mathbb{R}^n is the symbol for the set of all n-tuples that contain *n* real elements. For example,

$$(1,4,5)$$
 and $(1,5,4)$

are two different 3-tuples that belong to \mathbb{R}^3 . Similarly \mathbb{C}^n is the symbol for the set of all n-tuples which contains *n* complex elements, e.g.

(1+2i,0,3i,1,1) and (1,2,3,4,5)

eNote 5 5.1 NUMBER SPACES

are two different 5-tuples that belong to \mathbb{C}^5 . Formally we write \mathbb{L}^n in set notation as:

$$\mathbb{L}^{n} = \{ (a_{1}, a_{2}, ..., a_{n}) \mid a_{i} \in \mathbb{L} \}.$$
(5-1)

We introduce addition of elements in \mathbb{L}^n and multiplication of elements in \mathbb{L}^n by an element of \mathbb{L} (a scalar) by the following definition:

Definition 5.2

Let $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ be two elements of \mathbb{L}^n and let k be a number in \mathbb{L} (a scalar). *The sum* of the two n-tuples is defined by

$$(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n),$$
(5-2)

and *the product* of $(a_1, a_2, ..., a_n)$ by *k* by

$$k \cdot (a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_n) \cdot k = (k \cdot a_1, k \cdot a_2, \dots, k \cdot a_n).$$
(5-3)

 \mathbb{R}^n with the operations (5-2) and (5-3) is called the *n*-dimensional *real number space*. Similarly, \mathbb{C}^n with the operations (5-2) and (5-3), the *n*-dimensional *complex number space*.

Example 5.3 Addition

An example of the addition of two 4-tuples in \mathbb{R}^4 is

$$(1, 2, 3, 4) + (2, 1, -2, -5) = (3, 3, 1, -1)$$

Example 5.4 Multiplication

Denitio An example of multiplication of a 3-tuple in \mathbb{R}^3 by a scalar is

$$5 \cdot (2, 4, 5) = (10, 20, 25).$$

An example of multiplication of a 2-tuple in \mathbb{C}^2 by a scalar is

$$i \cdot (2+i,4) = (-1+2i,4i).$$

eNote 5 5.1 NUMBER SPACES

As a short notation for *n*-tuples we often use small **bold** letters, we write e.g.

$$\mathbf{a} = (3, 2, 1)$$
 or $\mathbf{b} = (b_1, b_2, ..., b_n)$.

For the *n*-tuple (0, 0, ..., 0), which is called *the zero element* of \mathbb{L}^n , we use the notion

 $\mathbf{0} = (0, 0, ..., 0)$.

When more complicated computational exercises in the number spaces are called for, there is a need for the following arithmetic rules.

Theorem 5.5 Arithmetic Rules in \mathbb{L}^n

For all values of *n*, in the number space \mathbb{L}^n the operations introduced in definition 5.2 obey the following eight rules:

- 1. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ (addition is commutative)
- 2. $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ (addition is associative)
- 3. For all **a**: $\mathbf{a} + \mathbf{0} = \mathbf{a}$ (i.e. **0** is neutral with respect to addition)
- 4. For all **a** there exists an *opposite element* $-\mathbf{a}$ such that $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$
- 5. $k_1(k_2\mathbf{a}) = (k_1k_2)\mathbf{a}$ (multiplication by scalars is associative)
- 6. $(k_1 + k_2)\mathbf{a} = k_1\mathbf{a} + k_2\mathbf{a}$ (distributive rule)
- 7. $k_1(\mathbf{a} + \mathbf{b}) = k_1\mathbf{a} + k_1\mathbf{b}$ (distributive rule)
- 8. $1\mathbf{a} = \mathbf{a}$ (the number 1 is neutral in a product with a scalar)

Proof

Concerning rule 4: Given two vectors $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$. Then

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, ..., a_n + b_n) = \mathbf{0} \Leftrightarrow b_1 = -a_1, ..., b_n = -a_n.$$

From this we deduce that **a** has an opposite vector $-\mathbf{a}$ given by $-\mathbf{a} = (-a_1, ..., -a_n)$. Moreover, this vector is unique.

The other rules are proved by calculating the left and right hand side of the equations and then comparing the two results.

From the proof of rule 4 in theorem 5.5 it is evident that for an arbitrary *n*-tuple $\mathbf{a}: -\mathbf{a} = (-1)\mathbf{a}$.

Exercise 5.6

Give a formal proof of rule 2 and rule 5 in Theorem 5.5.

Definition 5.7 Subtraction

Given $\mathbf{a} \in \mathbb{L}^n$ and $\mathbf{b} \in \mathbb{L}^n$. The difference $\mathbf{a} - \mathbf{b}$ is defined as:

$$a - b = a + (-b).$$
 (5-4)

III Example 5.8 Subtraction

(1+2i,1) - (i,2) = (1+2i,1) + (-(i,2)) = (1+2i,1) + (-i,-2) = (1+i,-1).

Exercise 5.9 The Zero Rule

Show that the following variant of the *zero rule* is valid:

$$k\mathbf{a} = \mathbf{0} \Leftrightarrow k = 0 \text{ or } \mathbf{a} = \mathbf{0}.$$
 (5-5)

Remark 5.10 *n*-Tuples as Vectors

Often an *n*-tuple is written as a *column vector*. We have two equivalent ways of writing, here with an example from \mathbb{R}^4 :

$$\mathbf{v} = (1, 2, 3, 4)$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$.

If in a given context the *n*-tuple is regarded as a *row vector* then a transposition is performed. The transpose of a column vector is a row vector (and vice versa), it has the symbol T:

 $\mathbf{v}^{\!\top} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}.$