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eNote 4

Taylor’s Approximation Formulas for
Functions of One Variable

In eNotes 19 and 21 it is shown how functions of one and two variables can be approximated by
first-degree polynomials at every (development) point and that the graphs for the approximating
first-degree polynomial are exactly the tangents and the tangent planes, respectively, for the
corresponding graphs of the functions. In this eNote we will show how the functions can be
approximated even better by polynomials of higher degree, so if the approximation to a function
is sufficiently good then one can use and continue the computations with the approximation
polynomial in place of the function itself and hope for a sufficiently small error. But what does it
mean that the approximation and the error are sufficiently good and sufficiently small? And
how does this depend on the degree of the approximating polynomial? You will find the answers
to these questions in this eNote.
(Updated: 22.09.2021 David Brander).

4.1 Higher Order Derivatives

First we consider functions f (x) of one variable x on an open interval of the real num-
bers. We will also assume that the functions can be differentiated an arbitrary number of
times, that is, all the derivatives exist for every x in the interval: f ′(x0), f ′′(x0), f ′′′(x0),
f (4)(x0), f (5)(x0), etc. where f (4)(x0) means the 4th derivative of f (x) in x0. These
higher order derivatives we will use in the construction of (the coefficients to) the ap-
proximating polynomials.
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Definition 4.1

If a function f (x) can be differentiated an abitrary number of times at every point x
in a given open interval I we say that the function is smooth on the interval I.

Example 4.2 Higher-Order Derivatives of Some Elementary Functions

Here are some higher-order derivatives of some well-known smooth functions:

f (x) f ′(x) f ′′(x) f ′′′(x) f (4)(x) f (5)(x)

ex ex ex ex ex ex

x2 2x 2 0 0 0
x3 3x2 6x 6 0 0
x4 4x3 12x2 24x 24 0
x5 5x4 20x3 60x2 120x 120

(x− x0)5 5 · (x− x0)4 20 · (x− x0)3 60 · (x− x0)2 120 · (x− x0) 120
cos(x) − sin(x) − cos(x) sin(x) cos(x) − sin(x)
sin(x) cos(x) − sin(x) − cos(x) sin(x) cos(x)

cosh(x) sinh(x) cosh(x) sinh(x) cosh(x) sinh(x)
sinh(x) cosh(x) sinh(x) cosh(x) sinh(x) cosh(x)

(4-1)
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Note that

1. The nth derivative f (n)(x) of the function f (x) = (x− x0)
n is

f (n)(x) = n · (n− 1) · (n− 2) · · · 2 · 1 = n! , (4-2)

Where n! (n factorial) is the short way of writing the product of the natu-
ral numbers from and including 1 to and including n, cf. Table 4.2 where
n! appears as 2! = 2, 3! = 6, 4! = 24, 5! = 120. Note: by definition 0! = 1,
so n! is well-defined for non-negative integers.

2. By repeated differentiation of cos(x) we get the same set of functions
periodically with the period 4: If f (x) = cos(x) then

f (p)(x) = f (p+4)(x) for all p ≥ 1 . (4-3)

The same applies for f (x) = sin(x).

3. By repeated differentiation of the hyperbolic cosine function cosh(x) we
again get the same ”set” of functions periodically with the period 2: If
f (x) = cosh(x) we get

f (p)(x) = f (p+2)(x) for all p ≥ 1 . (4-4)

This applies to the hyperbolic sine function f (x) = sinh(x), too.

Example 4.3 The Derivatives of a Somewhat Less Elementary Function

A function f (x) can e.g. be given as an integral (that in this case can be expressed by the
ordinary elementary functions):

f (x) =
∫ x

0
e−t2

dt . (4-5)

But we can easily find the higher order derivatives of the function for every x:

f ′(x) = e−x2
, f ′′(x) = −2 · x · e−x2

, f ′′′(x) = −2 · e−x2
+ 4 · x2 · e−x2

etc. (4-6)
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Example 4.4 The Derivatives of an Unknown Function

We assume that a function f (x) is given as a solution to a differential equation with the initial
conditions at x0:

f ′′(x) + 3 f ′(x) + 7 f (x) = q(x) , where f (x0) = 1 , and f ′(x0) = −3 (4-7)

where q(x) is a given smooth function of x. Again we can fairly easily find the higher order
derivatives of the function at x0 by using the initial conditions directly and by differentiating
the differential equation. We get the following from the initial conditions and from the differ-
ential equation itself:

f ′(x0) = −3 , f ′′(x0) = q(x0)− 3 f ′(x0)− 7 f (x0) = q(x0) + 2 . (4-8)

The third (and the higher-order) derivatives of f (x) we then obtain by differentiating both
sides of the differential equation. E.g. by differentiating once we get:

f ′′′(x) + 3 f ′′(x) + 7 f ′(x) = q′(x) , (4-9)

from which we get:

f ′′′(x0) = q′(x0)− 3 f ′′(x0)− 7 f ′(x0)

= q′(x0)− 3 · (q(x0) + 2)− 7 · (−3)

= q′(x0)− 3q(x0) + 15 .

(4-10)

4.2 Approximations by Polynomials

The point of the following to find the polynomial of degree n (e.g. the second-degree
polynomial) that best approximates a given smooth function f (x) at and around a given
x0 in the domain of the function D( f ).

For the case n = 2, we try to write f (x) in the following way:

f (x) = a0 + a1 · (x− x0) + a2 · (x− x0)
2 + R2,x0(x) , (4-11)

where a0, a1, and a2 are suitable constants that are to be chosen so that the remainder
function also known as the Lagrange remainder term R2,x0(x) is as small as possible at
and around x0. The remainder function we can express by f (x) and the polynomial we
are testing:

R2,x0(x) = f (x)− a0 − a1 · (x− x0)− a2 · (x− x0)
2 , (4-12)
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and it is this function that should be as close as possible to 0 when x is close to x0 such
that the difference between the function f (x) and the second-degree polynomial be-
comes as small as possible – at least in the vicinity of x0.

The first natural requirement is therefore that:

R2,x0(x0) = 0 corresponding to f (x0) = a0 , (4-13)

by which a0 is now determined.

The next natural requirement is that the graph of the remainder function has horizontal
gradient at x0 such that the tangent to the remainder function then is identical to the x
axis:

R′2,x0
(x0) = 0 such that f ′(x0) = a1 , (4-14)

by which a1 is determined.

The next requirement on the remainder function is then:

R′′2,x0
(x0) = 0 corresponding to f ′′(x0) = 2 · a2 , (4-15)

by which also a2 = 1
2 f ′′(x0) then is determined and fixed.

Thus we have found

f (x) = f (x0) +
f ′(x0)

1!
· (x− x0) +

f ′′(x0)

2!
· (x− x0)

2 + R2,x0(x) (4-16)

Where the remainder function R2,x0(x) satisfies the following requirement that makes it
very small in the neighborhood of x0:

R2,x0(x0) = R′2,x0
(x0) = R′′2,x0

(x0) = 0 . (4-17)

If similarly we had wished to find an approximating n’th degree polynomial for the
same function f (x) we would have found:

f (x) = f (x0) +
f ′(x0)

1!
· (x− x0) + · · ·+

f (n)(x0)

n!
· (x− x0)

n + Rn,x0(x) , (4-18)

where the remainder function Rn,x0(x) is a smooth function that satisfies all the require-
ments:

Rn,x0(x0) = R′n,x0
(x0) = · · · = R(n)

n,x0(x0) = 0 . (4-19)



eNote 4 4.2 APPROXIMATIONS BY POLYNOMIALS 6

At this point it is reasonable to expect, on one hand, that these requirements on the re-
mainder functions can be satisfied; on the other, that the remainder function itself must
’appear like’ and be as small as a power of (x− x0) close to x0.

This is precisely the content of the following Lemma:

Lemma 4.5 Remainder Functions

The remainder function Rn,x0(x) can be expressed from f (x) in two different ways,
and we will use both in what follows:

Rn,x0(x) =
f (n+1)(ξ(x))
(n + 1)!

· (x− x0)
n+1 , (4-20)

where ξ(x) lies between x and x0 in the interval I.

The other way is the following one, that contains an epsilon function:

Rn,x0(x) = (x− x0)
n · ε f (x− x0) , (4-21)

where ε f (x− x0) is an epsilon function of (x− x0).

Proof

We will content ourselves by proving the first statement (4-20) in the simplest case, viz. for
n = 0, i.e. the following : On the interval between (a fixed) x and x0 we can always find a
value ξ such that the following applies:

R0,x0(x) = f (x)− f (x0) =
f ′(ξ)
(1)!

· (x− x0) . (4-22)

But this is only a form of the mean value theorem: If a smooth function has values f (a) and
f (b), respectively, at the end points of an interval [a, b], then the graph for f (x) has at some
position a tangent that is parallel to the line segment connecting the two points (a, f (a)) and
(b, f (b)), see Figure 4.1.

The other statement (4-21) follows from the first (4-20) by observing that f (n+1)(ξ)
(n+1)! · (x− x0)n+1

is an epsilon function of (x− x0), since f (n+1)(ξ)
(n+1)! is bounded and since (x− x0)n+1 is itself an

epsilon function.
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�

Figure 4.1: Two points on the blue graph curve for a function are connected with a line
segment (red). The mean value theorem then says that at least one position exists (in
the case shown, exactly two positions, marked in green) on the curve between the two
given points where the slope f ′(x) for the tangent (black) to the curve is exactly the
same as the slope of the straight line segment.

Definition 4.6 Approximating Polynomials

Let f (x) denote a smooth function on an interval I. The polynomial

Pn,x0(x) = f (x0) +
f ′(x0)

1!
· (x− x0) + · · ·+

f (n)(x0)

n!
· (x− x0)

n (4-23)

is called the approximating polynomial of nth degree for the function f (x) with
development point x0.

To sum up:
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Theorem 4.7 Taylor’s Formulas

Every smooth function f (x) can for every non-negative integer n be divided into an
approximating polynomial of degree n and a remainder function like this:

f (x) = Pn,x0(x) + Rn,x0(x) , (4-24)

where the remainder function can be expressed in the following ways:

Rn,x0(x) =
f (n+1)(ξ(x))
(n + 1)!

· (x− x0)
n+1 for the ξ(x) between x and x0

and
Rn,x0(x) = (x− x0)

n · ε f (x− x0) .

(4-25)

In particular it is Taylor’s Limit Formula (where the remainder function is expressed by
an epsilon function) that we will make use of in what follows. We mention this version
explicitly:

Theorem 4.8 Taylor’s Limit Formula

Let f (x) denote a smooth function on an open interval I that contains a given x0.
Then for all x in the interval and for every integer n ≥ 0 the following applies

f (x) = f (x0)+
f ′(x0)

1!
· (x− x0)+ · · ·+

f (n)(x0)

n!
· (x− x0)

n +(x− x0)
n · ε f (x− x0) ,

where ε f (x − x0) denotes an epsilon function of (x − x0), i.e. ε f (x − x0) → 0 for
x → x0.

Example 4.9 The Approximating Polynomials of a Polynomial

One might be led to believe that every polynomial is its own approximating polynomial
because every polynomial must be the best approximation to itself. Here is an example that
shows that this is not that simple. We look at the third-degree polynomial

f (x) = 1 + x + x2 + x3 . (4-26)
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The polynomial f (x) has the following quite different approximating polynomials - depen-
dent on the choice of development point x0 and degree of development n:

P7,x0=0(x) = 1 + x + x2 + x3

P3,x0=0(x) = 1 + x + x2 + x3

P2,x0=0(x) = 1 + x + x2

P1,x0=0(x) = 1 + x

P0,x0=0(x) = 1

P7,x0=1(x) = 1 + x + x2 + x3

P3,x0=1(x) = 1 + x + x2 + x3

P2,x0=1(x) = 2− 2 · x + 4 · x2

P1,x0=1(x) = −2 + 6 · x
P0,x0=1(x) = 4

P7,x0=7(x) = 1 + x + x2 + x3

P3,x0=7(x) = 1 + x + x2 + x3

P2,x0=7(x) = 344− 146 · x + 22 · x2

P1,x0=7(x) = −734 + 162 · x
P0,x0=7(x) = 400 .

(4-27)

Exercise 4.10 Remainder Functions for Polynomials

For the function f (x) = 1+ x + x2 + x3 we consider the following two splittings into approx-
imating polynomials and corresponding remainder functions:

f (x) = P2,x0=1(x) + R2,x0=1(x) and

f (x) = P1,x0=7(x) + R1,x0=7(x) ,

(4-28)

where the two approximating polynomials P2,x0=1(x) and P1,x0=7(x) already are stated in
example 4.9. Determine the two remainder functions R2,x0=1(x) and R1,x0=7(x) expressed in
both of the two ways shown in 4-25: For each of the two remainder functions the respective
expressions for ξ(x) and for ε(x− x0) are stated.
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Example 4.11 Taylor’s Limit Formula with the Development Point x0 = 0

Here are some often-used functions with their respective approximating polynomials (and
corresponding remainder functions expressed by epsilon functions) with the common devel-
opment point x0 = 0 and arbitrarily high degree:

ex = 1 + x +
x2

2!
+ · · ·+ xn

n!
+ xn · ε(x)

ex2
= 1 + x2 +

x4

2!
+ · · ·+ x2n

n!
+ x2n · ε(x)

cos(x) = 1− x2

2!
+

x4

4!
+ · · ·+ (−1)n · x2n

(2n)!
+ x2n · ε(x)

sin(x) = x− x3

3!
+

x5

5!
+ · · ·+ (−1)n · x2n+1

(2n + 1)!
+ x2n+1 · ε(x)

ln(1 + x) = x− x2

2
+ · · ·+ (−1)n−1 · xn

n!
+ xn · ε(x)

ln(1− x) = −x− x2

2
− · · · − xn

n!
− xn · ε(x)

1
1 + x

= 1− x + x2 − x3 + · · ·+ (−1)n−1 · xn−1 + xn · ε(x)

1
1− x

= 1 + x + x2 + x3 + · · ·+ xn−1 + xn · ε(x)

(4-29)

Note that in Taylor’s Limit formula we always end with an epsilon function
and with the power of x that is precisely the same as the last power used in the
preceding approximating polynomial.

4.3 Continuous Extensions

The function f (x) = sin(x)/x is not defined at x = 0. We will investigate whether
we can extend the function to having a value at 0, such that the extended function is
continuous at 0. I.e. we will find a value a such that the a-extension

f̃ =

{
sin(x)

x for x 6= 0
a for x = 0

(4-30)

is continuous at x = 0, i.e. such that

sin(x)
x
→ a for x → 0 . (4-31)
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A direct application of Taylor’s limit formula appears in the determination of limit val-
ues for those quotients f (x)/g(x) where both the functions, i.e. the numerator f (x) and
the denominator g(x), tend towards 0 for x tending towards 0. What happens to the
quotient as x tends towards 0? We illustrate with a number of examples. Note that even
though the numerator function and the denominator function both are continuous at 0,
the quotient needs not be continuous.

Example 4.12 Limit Values for Function Fractions

sin(x)
x

=
x + x1 · ε(x)

x
= 1 + ε(x)→ 1 for x → 0 . (4-32)

sin(x)
x2 =

x− 1
3! x

3 + x3 · ε(x)
x2 =

1
x
− x

3!
+ x · ε(x) , (4-33)

that has no limit value for x → 0. Therefore a continuous extension does not exist in this case.

sin(x2)

x2 → 1 for x → 0 because
sin(u)

u
→ 1 for u→ 0 . (4-34)

sin(x)− x
x2 =

x− 1
3! x

3 + x3 · ε(x)− x
x2 = − x

3!
+ x · ε(x)→ 0 for x → 0 . (4-35)

sin(x)− x
x3 =

x− 1
3! x

3 + x3 · ε(x)− x
x3 = − 1

3!
+ ·ε(x)→ −1

6
for x → 0 . (4-36)

By determination of such limit values the approximating polynomials in the
numerator and the denominator are developed to such a high degree that limit
value ”appears” by dividing both the numerator and the denominator by a
power of x.

Here is a somewhat more complicated example:
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Figure 4.2: The function f (x) = sin(x)/x (blue) together with the numerator function
sin(x) (red) and the denominator function x (also red). The function f (x) is continuous
at x = 0 exactly when we use the value f (1) = 1.

Example 4.13 The Limit Value for a Fraction Between Functions

2 cos(x)− 2 + x2

x · sin(x)− x2 =
2 · (1− 1

2! · x2 + 1
4! · x4 + x4 · ε1(x))− 2 + x2

x · (x− 1
3! · x3 + 1

5! · x5 + x5 · ε2(x))− x2

=
2− x2 + 1

12 · x4 + 2 · x4 · ε1(x)− 2 + x2

x2 − 1
3! · x4 + 1

5! · x6 + x6 · ε2(x)− x2

=
1

12 · x4 + 2 · x4 · ε1(x)
− 1

3! · x4 + 1
5! · x6 + x6 · ε2(x)

=
1

12 + 2 · ε1(x)
− 1

6 +
1
5! · x2 + x2 · ε2(x)

→ −1
2

for x → 0 ,

(4-37)

since the numerator tends towards 1
12 for x → 0 and the denominator tends towards − 1

6 for
x → 0.
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4.4 Estimation of the Remainder Functions

How large is the error committed by using the approximating polynomial (which it is
easy to compute) instead of the function itself (that can be difficult to compute) on a
given (typically small) interval around the development point? The remainder function
can of course give the answer to this question. We give here a couple of examples
that show how the remainder function can be used for such error estimations for given
functions.

Figure 4.3: The function f (x) = ln(x) from Example 4.14 (blue), the approximating
first-degree polynomial (black) with development point x0 = 1 and the corresponding
remainder function (red) illustrated as the difference between f (x) and the approximat-
ing polynomial on the interval

[3
4 , 5

4

]
. To the right is shown the figure around the point

(1, 0) close-up.

Example 4.14 Approximation of an Elementary Function

The logarithmic function ln(x) is defined for positive values of x. We approximate with
the approximating first-degree polynomial with the development point at x0 = 1 and will
estimate the remainder term on a suitably small interval around x0 = 1, i.e. the starting point
is the following:

f (x) = ln(x) , x0 = 1 , n = 1 , x ∈
[

3
4

,
5
4

]
. (4-38)

According to Taylor’s formula with the remainder function we have - using the development
point x0 = 1 where f (1) = 0 and f ′(1) = 1 and using f ′′(x) = −1/x2 for all x in the domain:
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f (x) = ln(x) = ln(1) +
f ′(1)

1!
(x− 1) +

f ′′(ξ)
2!
· (x− 1)2 = x− 1− 1

2 · ξ2 · (x− 1)2 (4-39)

for a value of ξ between x and 1. Thus we have found:

P1,x0=1(x) = x− 1 , and R1,x0=1(x) = − 1
2 · ξ2 · (x− 1)2 . (4-40)

The absolute value of the remainder function on the given interval can now be evaluated for all
x in the given interval - even if we do not know very much about the position of ξ in the
interval apart from the fact that ξ lies between x and 1:

We have

|R1,x0=1(x)| = | − 1
2 · ξ2 · (x− 1)2| ≤ | 1

2 · ξ2 ·
(

1
4

)2

| . (4-41)

Here the minus sign has been removed because we only look at the absolute value and we
have also used that (x − 1)2 clearly is largest (with the value (1/4)2) for x = 3/4 and for
x = 5/4 in the interval. In addition ξ is smallest and thus (1/ξ)2 largest on the interval for
ξ = 3/4. (Note that here we do not use the fact of ξ lying between x and 1 - we simply use
the fact of ξ lying in the interval!) I.e.

|R1,x0=1(x)| ≤ | 1
32 · ξ2 | ≤ |

1

32 ·
( 3

4

)2 | =
1
18

, (4-42)

thus we have proved that

| ln(x)− (x− 1)| ≤ 1
18

for all x ∈
[

3
4

,
5
4

]
. (4-43)
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One may well wonder why the remainder function estimation of such a simple
function as f (x) = ln(x) in Example 4.14 should be so complicated, when it is
evident to everybody (!) that the red remainder function in that case assumes
its largest numerical (absolute) value at one of the end points of the actual
interval, see Figure 4.3 – a statement, moreover, which we can prove by a quite
ordinary function investigation.

By differentiation of the remainder function we get:

R′1,x0=1(x) =
d

dx
(ln(x)− (x− 1)) =

1
x
− 1 , (4-44)

that is less than 0 precisely for x > 1 (such that R1,x0=1(x) to the right of x = 1
is negative and decreasing from the value 0 at x = 1) and greater than 0 for
x < 1 (such that R1,x0=1(x) to the left of x = 1 is negative and increasing
towards the value 0 at x = 1). But the problem is that we in principle do not
know what the value of ln(x) in fact is – neither at x = 3/4 nor at x = 5/4
unless we use Maple or some other tool as help. The remainder function
estimate uses only the defined properties of f (x) = ln(x), i.e. f ′(x) = 1/x and
f (1) = 0 and the estimation gives the values (also at the end points of the
interval) with a (numerical) error of at most 1/18 in this case.

If we actually get the information that ln(3/4) = −0.2877 and ln(5/4) =
0.2223 we then of course get a direct estimate of the largest value of |R1,x0=1(x)|
in the interval

[3
4 , 5

4

]
:

|R1,x0=1(x)| ≤ max{| − 0.2877 + 0.25| , |0.2223− 0.25|}
= 0.0377 < 1/18 = 0.0556 .

(4-45)

With the ordinary function analysis we get a somewhat better estimate of the
remainder function – but only because we beforehand can estimate the func-
tion value at the end points.

Exercise 4.15 Approximation of a Non-Elementary Function

Given the function from Example 4.3:

f (x) =
∫ x

0
e−t2

dt (4-46)

An estimate of the magnitude of the difference between f (x) and the approximating first-
degree polynomial P1,x0=0(x) with the development point at x0 = 0 is wished for. The exer-
cise is about determining the largest absolute value that the remainder function |R1,x0=0(x)|
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Figure 4.4: The function f (x) from Example 4.15 (blue), the approximating first- and
third-degree polynomials (black) with development points x0 = 0 and the correspond-
ing remainder functions (red) on the interval [−1, 1].

assumes on the interval [−1, 1].
Hint: Use higher order derivatives of f (x) evaluated at x0 = 0 found earlier, cf. Example 4.3:
f (0) = 0, f ′(0) = 1, f ′′(x) = −2 · x · e−x2

. See Figure 4.4.

Example 4.16 Approximation of an Unknown (But Elementary) Function

Given the function from example 4.4, i.e. the function satisfies the following differential
equation with initial conditions:

f ′′(x) + 3 f ′(x) + 7 f (x) = x2 , where f (0) = 1 , and f ′(0) = −3 , (4-47)

where we have assumed that the right-hand side of the equation is q(x) = x2 and that the
development point is x0 = 0. By this we now get:

f ′(0) = −3 , f ′′(0) = 2 , f ′′′(0) = 15 . (4-48)

We have

f (x) = f (0) + f ′(0) · x +
f ′′(0)

2
· x2 +

f ′′′(0)
6
· x3 + x3 · ε(x)

=1− 3 · x + x2 +
5
2
· x3 + x3 · ε(x) ,

(4-49)

such that the approximating third-degree polynomial for f (x) with development point x0 =

0 is
P3,x0=0(x) = 1− 3 · x + x2 +

5
2
· x3 . (4-50)
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Figure 4.5: The function f (x) from Example 4.16 (blue), the approximating first-,
second-, and third-degree polynomials (black) with the development point x0 = 0. The
corresponding respective remainder functions (red) are illustrated as the differences be-
tween f (x) and the approximating polynomials.

Note that P3,x0=0(x) satisfies the initial conditions in (4-47) but the polynomial P3,x0=0(x) is
not a solution to the differential equation itself!

4.5 Functional Investigations

A very important property of continuous functions is the following, which means one
can control how large and how small values a continuous function can assume on an
interval, as long as the interval is sufficiently nice:
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Theorem 4.17 Main Theorem for Continuous Functions of One Variable

Let f (x) denote a function that is continuous on all of its domain D( f ) ⊂ R. Let
I = [ a , b ] be a bounded, closed, and connected interval in D( f ).

Then the range for the function f (x) on the interval I is also a bounded, closed and
connected interval [ A , B ] ⊂ R, thus denoted:

R( f|I ) = f (I) = { f (x) | x ∈ I} = [ A , B ] , (4-51)

where the possibility that A = B is allowed and this happens precisely when f (x) is
constant on the whole interval I.

Definition 4.18 Global Minimum and Global Maximum

When a function f (x) has the range R( f|I ) = f (I) = [ A , B ] on an interval I = [a, b]
we say that

1. A is the global minimum value for f (x) on I, and if f (x0) = A for x0 ∈ I then
x0 is a global minimum point for f (x) on I.

2. B is the global maximum value for f (x) on I, and if f (x0) = B for x0 ∈ I then
x0 is a global maximum point for f (x) on I.

A well-known and important task is to find the global maximum and minimum values
for given functions f (x) on given intervals and to determine the x-values for which
these maximum and minimum values are assumed, that is, the minimum and maximum
points. To solve this task the following is an invaluable help – see Figure 4.6:

Lemma 4.19 Maxima and Minima at Stationary Points

Let x0 be a global maximum or minimum value for f (x) on I. Assume that x0 is not
an end point for the interval I and that f (x) is differentiable at x0.
Then x0 is a stationary point for f (x),i.e. f ′(x0) = 0.
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Proof

We outline the argument. Since f (x) is assumed differentiable, we have:

f (x) = f (x0) + f ′(x0) · (x− x0) + (x− x0) · ε f (x− x0)

= f (x0) + (x− x0) · ( f ′(x0) + ε f (x− x0)) .
(4-52)

Now if we assume that f ′(x0) is positive then the parenthesis ( f ′(x0) + ε f (x − x0)) is also
positive for x sufficiently close to x0 (since ε f (x − x0) → 0 for x → x0), but then (x − x0) ·
( f ′(x0) + ε f (x − x0)) is also positive for x sufficiently close to x0 and then f (x) > f (x0) for
x > x0, and f (x) < f (x0) for x < x0. Therefore f (x0) can not be neither a maximum value nor
a minimum value for f (x). A similar conclusion appears when the assumption is f ′(x0) < 0.
If x0 is a global maximum or minimum value for f (x) on I this assumption must imply that
f ′(x0) = 0.

�

Hereby we have the following investigation method at our disposal:

Method 4.20 Method of Investigation

Let f (x) be a continuous function and I = [a, b] an interval in the domain D( f ).

Maximum and minimum values for the function f (x), x ∈ I, i.e. A and B in the
range [A, B] for f (x) restricted to I, are found by finding and comparing the function
values at the following points:

1. Interval end points (the boundary points a and b for the interval I).

2. Exception points, i.e. the points in the open interval ]a, b[ where the function is
not differentiable.

3. The stationary points, i.e. all the points x0 in the open interval ]a, b[ where
f ′(x0) = 0.
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With this method of investigation we not only find the global maximum and
minimum values but also the x-values in I for which the global maximum and
the global minimum are assumed i.e. maximum and minimum points in the
actual interval.

Example 4.21 A Continuous Function Is Investigated

A Continuous function f (x) is defined for all x in the following way:

f (x) =



0.75 for x ≤ −1.5
0.5 + (x + 1)2 for − 1.5 ≤ x ≤ 0
1.5 · (1− x3) for 0 ≤ x ≤ 1
x− 1 for 1 ≤ x ≤ 2
1 for x > 2

(4-53)

See Figure 4.6, where we only consider the function on the interval I = [−1.5, 2.0]. There are
two exception points where the function is not differentiable: x0 = 0 and x0 = 1. There is
one stationary point in ]− 1.5, 2.0[ where f ′(x0) = 0 viz. x0 = −1. And finally there are two
boundary points (the interval end points x0 = −1.5 and x0 = 2) that need to be investigated.

Therefore we have the following candidates for global maximum and minimum values for f
on I:

x0 = −1.5 −1 0 1 2
f (x0) = 0.75 0.5 1.5 0 1

(4-54)

In conclusion we read from this that the maximum value for f (x) is B = 1.5 which is assumed
at the maximum point x0 = 0. The minimum value is A = 0, assumed at the minimum point
x0 = 1. There are no other maximum or minimum points for f on I.
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Figure 4.6: The continuous function f (x) from example 4.21 (blue). On the graph we
have marked (in red) the 5 points that need to be investigated particularly in order to
determine the range for f in the interval [−1.5, 2], cf. Method 4.20.

Definition 4.22 Local Minima and Local Maxima

Let f (x) denote a function on an interval I = [a, b] containing a given x0 ∈]a, b[.

1. If f (x) ≥ f (x0) for all x in a (as small as you like) neighborhood of x0 then
f (x0) is called a local minimum value for f (x) in I and x0 is a local minimum
point for f (x) in I. If actually f (x) > f (x0) for all x in the neighborhood apart
from the point x0 itself then f (x0) is called a proper local minimum value.

2. If f (x) ≤ f (x0) for all x in a (as small as you like) neighborhood of x0 then
f (x0) is called a local maximum value for f (x) in I and x0 is a local maximum
point for f on I. If actually f (x) < f (x0) for all x in the neighborhood apart
from the point x0 itself then f (x0) is called a proper local maximum value.

If the function we want to investigate is smooth at its stationary points then we can
qualify the Method 4.20 even better, since the approximating polynomial of degree 2
with development point at the stationary point can help in the decision whether the
value of f (x) at the stationary point is a candidate to be a maximum value or a minimum
value.
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Lemma 4.23 Local Analysis at a Stationary Point

Let f (x) be a smooth function and assume that x0 is a stationary point for f (x) on
an interval I =]a, b[. Then the following applies:

1. If f ′′(x0) > 0 then f (x0) is a proper local minimum value for f (x).

2. If f ′′(x0) < 0 then f (x0) is a proper local maximum value for f (x).

3. If f ′′(x0) = 0 then this is not sufficient information to decide whether f (x0) is
a local minimum value or a local maximum value or neither.

Exercise 4.24

Prove Lemma 4.23 by using Taylor’s limit formula with the approximating second-degree
polynomial for f (x) and with the development point x0. Remember that x0 is a stationary
point, such that f ′(x0) = 0.

Example 4.25 Local Maxima and Minima

The continuous function f (x)

f (x) =



0.75 for x ≤ −1.5
0.5 + (x + 1)2 for − 1.5 ≤ x ≤ 0
1.5 · (1− x3) for 0 ≤ x ≤ 1
x− 1 for 1 ≤ x ≤ 2
1 for x ≥ 2

(4-55)

is shown in Figure 4.6. On the interval I = [−1.5, 2.0] the function has the proper local
minimum values 0.5 and 0 in the respective proper local minimum points x0 = −1 and x0 = 1
and the function has a proper local maximum value 1.5 at the proper local maximum point
x0 = 0. If we extend the interval to J = [−7, 7] and note that the function values by definition
are constant outside the interval I we get the new local maximum values 0.75 and 1 for f on
J – not one of them is a proper local maximum value. All x0 ∈]− 7,−1.5] and all x0 ∈ [2, 7[
are local maximum points for f on J but not one of them is a proper local maximum point. All
x0 in the open interval x0 ∈]− 7,−1.5[ and all x0 in the open interval x0 ∈]2, 7[ in addition also
local minimum points for f (x) i J but not one of them is a proper local minimum point.
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Figure 4.7: Proper local maxima and proper local minima for the function from Example
4.26 are here indicated on the graph for the function. We note: The local maximum and
minimum points for the function are the x-coordinates of the graph points shown in red,
and the local maximum and minimum values for the function are the y-coordinates of
the graph-points shown in red.

Example 4.26 A Non-Elementary Function

The function f (x)

f (x) =
∫ x

0
cos(t2) dt (4-56)

has stationary points at those values of x0 satisfying:

f ′(x0) = cos(x2
0) = 0 , dvs. x2

0 =
π

2
+ p · π where p is an integer . (4-57)

Since we also have that
f ′′(x) = −2 · x · sin(x2) , (4-58)

such that at the stated stationary points it applies

f ′′(x0) = −2 · x0 · (−1)p . (4-59)

From this it follows – via Lemma 4.23 – that every other stationary point x0 along the x-axis
is a proper local maximum point for f (x) and the other points proper local minimum points.
See Figure 4.7. In Figure 4.8 are shown graphs (parabolas) for a pair of the approximat-
ing second-degree polynomials for f (x) with the development points at chosen stationary
points.
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Figure 4.8: The graph for the function in Example 4.26 and two approximating parabolas
with development points in two stationary points, which are a proper local minimum
point and a proper local maximum point for f (x).

Example 4.27 When the Approximation to Degree 2 is Not Good Enough

As stated in Lemma 4.23 one cannot from f ′(x0) = f ′′(x0) = 0 decide whether the function
has a local maximum or minimum at x0. This is shown in the three simple functions in Figure
4.9 with all the clarity one could wish for: f1(x) = x4, f2(x) = −x4 and f3(x) = x3. All three
functions have a stationary point at x0 = 0 and all have f ′′(x0) = 0, but f1(x) has a proper
local minimum point at 0, f2(x) has a proper local maximum point at 0, and f3(x) has neither
a local minimum point nor a local maximum point at 0.
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Figure 4.9: Three elementary functions with approximating second-degree polynomials
P2,x0=0(x) = 0 for all x. The functions are: f1(x) = x4 (red), f2(x) = −x4 (black) and
f3(x) = x3 (blue).
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4.6 Summary

In this eNote we have studied how one can approximate smooth functions using poly-
nomials.

• Every smooth function f (x) on an interval I can be split into an approximating
n’th-degree polynomial Pn,x0(x) with the development point x0 and a correspond-
ing remainder function Rn,x0(x) like this:

f (x) = Pn,x0(x) + Rn,x0(x) , (4-60)

where the polynomial and the remainder function in Taylor’s limit formula are
written like this:

f (x) = f (x0)+
f ′(x0)

1!
· (x− x0)+ · · ·+

f (n)(x0)

n!
· (x− x0)

n +(x− x0)
n · ε f (x− x0) ,

with ε f (x − x0) denoting an epsilon function of (x − x0), i.e. ε f (x − x0) → 0 for
x → x0.

• Taylor’s limit formula can be used to find the continuous extension of quotients
of functions by finding (if possible) their limit values for x → x0 where x0 are
the values where the numerator function is 0 such that the quotient at the starting
point is not defined at x0:

sin(x)
x

=
x + x1 · ε(x)

x
= 1 + ε(x)→ 1 for x → 0 . (4-61)

• Estimation of the remainder function gives an upper bound for the largest numer-
ical difference between a given function and the approximating polynomial of a
suitable degree and with a suitable development point on a given interval of in-
vestigation. Such an estimation can also be made for functions that are possibly
only ”known” via a differential equation or as a non-elementary integral:

| ln(x)− (x− 1)| ≤ 1
18

for all x ∈
[

3
4

,
5
4

]
. (4-62)

• Taylor’s limit formula with approximating second-degree polynomials is used for
efficient functional investigation, including determination of range, global and lo-
cal maxima and minima for given functions.
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