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eNote 2

Polynomials of One Variable

In this eNote complex polynomials of one variable are introduced. An elementary knowledge of
complex numbers is a prerequisite, and knowlege of real polynomials of one real variable is
recommended.

Updated: 29.05.16. Karsten Schmidt. 11.9.2021. David Brander.

2.1 Introduction

Polynomials are omnipresent in the technical literature about mathematical models of
physical problems. A great advantage of polynomials is the simplicity of computation
since only addition, multiplication and powers are needed. Because of this polynomials
are especially applicable as approximations to more complicated types of functions.

Knowledge about the roots of polynomials is the main road to understanding their prop-
erties and efficient usage, and is therefore a major subject in the following. But first we
introduce some general properties.
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Definition 2.1

By a polynomial of degree n we understand a function that can be written in the form

P(z) = an zn + an−1 zn−1 + · · ·+ a1 z + a0 (2-1)

where a0, a1, . . . , an are complex constants with an 6= 0 , and z is a complex vari-
able.

ak is called the coefficient of zk, k = 0, 1, . . . , n , and an is the leading coefficient.
A real polynomial is a polynomial in which all the coefficients are real.
A real polynomial of a real variable is a real polynomial in which we assume z ∈ R .

Polynomials are often denoted by a capital P or similar letter Q, R, S . . . If the
situation requires you to include the variable name, the polynomial is written
as P(z) where it is understood that z is an independent complex variable.

Example 2.2 Examples of Polynomials

P(z) = 2 z3 + (1 + i) z + 5 is a polynomial of the third degree.
Q(z) = z2 + 1 is a real quadratic polynomial.
R(z) = 17 is a polynomial of the 0′th degree.
S(z) = 0 is called the 0-polynomial and is not assigned any degree.
T(z) = 2 z3 + 5

√
z− 4 is not a polynomial.

If you multiply a polynomial by a constant, or when you add, subtract, multiply and
compose polynomials with each other, you get a new polynomial. This polynomial can
be simplified by gathering terms of the same degree and written in the form (2.1).

Example 2.3 Addition and Multiplication of Polynomials

Two polynomials P and Q are given by P(z) = z2 − 1 and Q(z) = 2 z2 − z + 2 . The
polynomials R = P + Q and S = P ·Q are determined like this:

R(z) = (z2 − 1) + (2 z2 − z + 2) = (z2 + 2 z2) + (−z) + (−1 + 2) = 3 z2 − z + 1 .

S(z) = (z2 − 1) · (2 z2 − z + 2) = (2 z4 − z3 + 2 z2) + (−2 z2 + z− 2)

= 2 z4 − z3 + (2 z2 − 2 z2) + z− 2 = 2 z4 − z3 + z− 2 .
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2.2 The Roots of Polynomials

Definition 2.4 Root of a Polynomial

By a root of a polynomial P(z) we understand a number z0 such that P(z0) = 0 .

Example 2.5 Whether a Given Number Is a Root of a Polynomial

Show that 3 is a root of P(z) = z3 − 5 z− 12 , and that 1 is not a root.

Since P(3) = 33 − 5 · 3− 12 = 0 , 3 is a root of P .
Since P(1) = 13 − 5 · 1− 12 = −16 6= 0 , 1 is not a root of P .

To develop the theory we shall need the following Lemma.
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Lemma 2.6 The Theorem of Descent

A polynomial P of the degree n is given by

P(z) = an zn + an−1 zn−1 + · · ·+ a1 z + a0 . (2-2)

If z0 is an arbitrary number, and Q is the polynomial of the n-1′ degree given by
the coefficients

bn−1 = an (2-3)
bk = ak+1 + z0 · bk+1 for k = n−2, . . . , 0 , (2-4)

then P can be written in the factorized form

P(z) = (z− z0)Q(z) (2-5)

if and only if z0 is a root of P .

Proof

Let the polynomial P be given as in the theorem, and let α be an arbitrary number. Consider
an arbitrary (n− 1)-degree polynomial

Q(z) = bn−1 zn−1 + bn−2 zn−2 + · · ·+ b1 z + b0 .

By simple calculation we get

(z− α)Q(z) = bn−1 zn + (bn−2 − αbn−1) zn−1 + · · ·+ (b0 − αb1)z− αb0 .

It is seen that the polynomials (z− α)Q(z) and P(z) have the same representation if we in
succession write the bk-coefficients for Q as given in (2-3) and (2-4), and if at the same time
the following is valid:

−αb0 = a0 ⇔ b0 α = −a0 .

We investigate whether this condition is satisfied by using (2-3) and (2-4) in the opposite
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order:

b0 α = (a1 + αb1)α = b1α2 + a1α

= (a2 + αb2)α
2 + a1α = b2α3 + a2α2 + a1α

...

= bn−1αn + an−1αn−1 + · · ·+ a2α2 + a1α

= anαn + an−1αn−1 + · · ·+ a2α2 + a1α = −a0

⇔ P(α) = anαn + an−1αn−1 + · · ·+ a2α2 + a1α + a0 = 0 .

It is seen that the condition is only satisfied if and only if α is a root of P . By this the proof is
complete.

�

Example 2.7 Descent

Given the polynomial P(z) = 2z4 − 12z3 + 19z2 − 6z + 9 . It is seen that 3 is a root
since P(3) = 0 . Determine a third-degree polynomial Q such that

P(z) = (z− 3)Q(z) .

We set a4 = 2, a3 = −12, a2 = 19, a1 = −6 og a0 = 9 and find the coefficients for Q by the
use of (2-3) and (2-4):

b3 =a4 = 2

b2 =a3 + 3b3 = −12 + 3 · 2 = −6

b1 =a2 + 3b2 = 19 + 3 · (−6) = 1

b0 =a1 + 3b1 = −6 + 3 · 1 = −3 .

We conclude that
Q(z) = 2z3 − 6z2 + z− 3

so
P(z) = (z− 3) (2z3 − 6z2 + z− 3) .

When a polynomial P with the root z0 is written in the form P(z) = (z − z0)Q1(z) ,
where Q1 is a polynomial, it is possible that z0 is also a root of Q1 . Then Q1 can
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similarly be written as Q1(z) = (z− z0)Q2(z) where Q2 is a polynomial. And in this
way the descent can successively be carried out as P(z) = (z− z0)

mR(z) where R is
a polynomial in which z0 is not a root. We will now show that this factorization is
unique.

Theorem 2.8 The Multiplicity of a Root

If z0 is a root of the polynomial P , it can in exactly one way be written in factorised
form as:

P(z) = (z− z0)
m R(z) (2-6)

where R(z) is a polynomial for which z0 is not a root.

The exponent m is called the algebraic multiplicity of the root z0 .

Proof

Assume that α is a root of P , and that (contrary to the statement in the theorem) there exist
two different factorisations

P(z) = (z− α)r R(z) = (z− α)s S(z)

where r > s , and R(z) and S(z) are polynomials of which α is not a root. We then get

(z− α)r R(z)− (z− α)s S(z) = (z− α)s( (z− α)kR(z)− S(z)
)
= 0 , for all z ∈ C

where k = r− s. This equation is only satisfied if

(z− α)k R(z) = S(z) for all z 6= α .

Since both the left-hand and the right-hand sides are continuous functions, they must have
the same value at z = α . From this we get that

S(α) = (z− α)kR(α) = 0

which is contradictory to the assumption that α is not a root of S .

�
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Example 2.9

In Example 2.7 we found that

P(z) = (z− 3) (2z3 − 6z2 + z− 3)

where 3 is a root. But 3 is also a root of the factor 2z3 − 6z2 + z− 3 . By using the theorem
of descent, Theorem 2.6, on this polynomial we get

P(z) = (z− 3) (z− 3)(2z2 + 1) = (z− 3)2 (2z2 + 1) .

Since 3 is not a root of 2z2 + 1 , the root 3 in P has the multiplicity 2 .

Now we have started a process of descent! How far can we get along this way? To con-
tinue this investigation we will need a fundamental result, viz the Fundamental Theorem.

2.2.1 The Fundamental Theorem of Algebra

A decisive reason for the introduction of complex numbers is that every (complex) poly-
nomial has a root in the set of complex numbers. This result was proven by the math-
ematician Gauss in his ph.d.-dissertation from 1799 . The proof of the theorem is de-
manding, and Gauss strove all his life to refine his proof more. Four versions of the
proof by Gauss exist, so there is no doubt that he put a lot of emphasis on this theorem.
Here we take the liberty to state Gauss’ result without proof:

Theorem 2.10 The Fundamental Theorem of Algebra

Every polynomial of degree n ≥ 1 has at least one root within the set of complex
numbers.

The polynomial P(z) = z2 + 1 has no roots within the set of real numbers. But
within the set of complex numbers it has two roots i and −i because

P(i) = i2 + 1 = −1 + 1 = 0 and P(−i) = (−i)2 + 1 = i2 + 1 = 0 .
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The road from the fundamental theorem of algebra until full knowledge of the number
of roots is not long. We only have to develop the ideas put forward in the theorem of
descent futher.

We consider a polynomial P of degree n with leading coefficient an . If n ≥ 1 , P has
according to the fundamental theorem of algebra a root α1 and therefore by the use of
method of coefficients, cf. Theorem 2.6 it can be written as

P(z) = (z− α1)Q1(z) (2-7)

where Q1 is a polynomial of degree n-1 with leading coefficient an . If n ≥ 2 , then Q1
has a root α2 and can be written as

Q1(z) = (z− α2)Q2(z)

where Q2 is a polynomial of degree n-2 also with a leading coefficient an . By substi-
tution we now get

P(z) = (z− α1)(z− α2)Q2(z) .

In this way the construction of polynomials of descent Qk of degree n − k for k =
n− 1, . . . , 0 continues until we reach the polynomial Qn of degree n-n = 0 , which in
accordance with Example 2.2, is equal to its leading coefficient an . Hereafter P can be
written in its completely factorized form:

P(z) = an(z− α1)(z− α2) · · · (z− αn) . (2-8)

In this expression we should note three things:

• First all the n numbers α1, . . . , αn that are listed in (2-8), are roots of P since
substitution into the formula gives the value 0 .

• The second thing we notice is that P cannot have other roots than the n given
ones. That there cannot be more roots is easily seen as follows: If an arbitrary
number α 6= αk, k = 1, . . . , n , is inserted in place of z in (2-8), all factors on the
right-hand side of (2-8) will be different from zero. Hence their product will also
be different form zero. Therefore P(α) 6= 0 , and α is not a root of P .

• The last thing we notice in (2-8), is that the roots are not necessarily different. If
z1, z2, . . . , zp are the p different roots of P , and mk is the multiplicity of zk , k =
1, . . . , p , then the completely factorized form (2-8) can be simplified as follows

P(z) = an(z− z1)
m1(z− z2)

m2 · · · (z− zp)
mp (2-9)

where the following applies:

m1 + m2 · · ·+ mp = n .
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According to the preceding arguments we can now present the fundamental theorem of
algebra in the extended form.

Theorem 2.11 The Fundamental Theorem of Algebra — Version 2

Every polynomial of degree n ≥ 1 has within the set of complex numbers exactly
n roots, when the roots are counted with multiplicity.

Example 2.12 Quadratic Polynomial in Completely Factorized Form

An arbitrary quadratic polynomial P(z) = az2 + bz + c can be written in the form

P(z) = a(z− α)(z− β)

where α and β are roots of P . If α 6= β , P has two different roots, both with algebraic
multiplicity 1 . If α = β , P has only one root with the algebraic multiplicity 2 . The roots are
then denoted a double root.

Example 2.13 Algebraic Multiplicity

A polynomial P is given in complete factorized form as:

P(z) = 7(z− 1)2(z + 4)3(z− 5) .

We see that P has three different roots: 1,−4 and 5 with the algebraic multiplicities 2 , 3
and 1 , respectively.

We notice that the sum of the algebraic multiplicities is 6 which equals the degree of P in
concordance with the Fundamental Theorem of Algebra — Version 2.

Example 2.14 Algebraic Multiplicity

State the number of roots of P(z) = z3 .

P has only one root z = 0 . The algebraic multiplicity of this root is 3. One says that 0 is a
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triple root in the polynomial.

2.3 Identical Polynomials

Two polynomials P and Q are equal (as functions of z) if P(z) = Q(z) for all z . But
what does it take for two polynomials to be equal? Is it possible that a fourth-degree and
a fifth-degree polynomial take on the same value for all variables as long as you choose
the right coefficients? This is not the case as is seen from the following theorem.

Theorem 2.15 The Identity Theorem for Polynomials

Two polynomials are identical if and only if they are of the same degree, and all
coefficients for corresponding terms of the same degree from the two polynomials
are equal.

Proof

We consider two arbitrary polynomials P og Q . If they are of the same degree, and all
the coefficients for terms of the same degree are equal, they must have the same value for
all variables and hence they are identical. This proves the first direction of the theorem of
identity.

Assume hereafter that P og Q are identical as functions of z, but that not all coefficients for
terms of the same degree from the two polynomials are equal. We assume further that P has
the degree n and Q the degree m where n ≥ m . Let ak be the coefficients for P and let bk
be the coefficients for Q , and consider the difference polynomial

R(z) =P(z)−Q(z) (2-10)

=(an − bn)zn + (an−1 − bn−1)zn−1 + · · ·+ (a1 − b1)z + (a0 − b0)

where we for the case n > m put bk = 0 for m < k ≤ n . We note that the 0-degree
coefficient (a0 − b0) cannot be the only coefficient of R(z) that is different from 0, since this
would make P(0)− Q(0) = (a0 − b0) 6= 0 which contradicts that P and Q are identical as
functions. Therefore the degree of R is greater than or equal to 1. On the other hand (2-10)
shows that the degree of R at the most is n . Now let zk , k = 1, . . . , n + 1 , be n + 1 different
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numbers. They are all roots of R since

R(zk) = P(zk)−Q(zk) = 0 , k = 1 . . . n + 1 .

This contradicts the fundamental theorem of algebra – version 2, Theorem 2.11: R cannot
have a number of roots that is higher than its degree. The assumption, that not all coefficients
of terms of the same degree from P and Q are equal, must therefore be wrong. From this
it also follows that P and Q have the same degree. By this the second part of the identity
theorem is proven.

�

Example 2.16 Two Identical Polynomials

The equation
3 z2 − z + 4 = a z2 + b z + c

is satisfied for all z exactly when a = 3, b = −1 og c = 4 .

Exercise 2.17 To Identical Polynomials

Determine the numbers a, b and c such that

(z− 2)(a z2 + b z + c) = z3 − 5 z + 2 for all z .

In the following section we treat methods of finding roots of certain types of polynomi-
als.

2.4 Polynomial Equations

From the fundamental theorem of algebra, Theorem 2.10, we know that every polyno-
mial of degree greater than or equal to 1 has roots. Moreover, in the extended version,
Theorem 2.11, it is maintained that for every polynomial the degree is equal to the num-
ber of roots if the roots are counted with multiplicity. But the theorem is a theoretical
theorem of existence that does not help in finding the roots.

In the following methods for finding the roots of simple polynomials are introduced.
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But let us keep the level of ambition (safely) low, because in the beginning of the 17′th
century the Norwegian algebraicist Abel showed that one cannot establish general meth-
ods for finding the roots of arbitrary polynomials of degree larger than four!

For polynomials of higher degree than four a number of smart tricks exist by which one
can successfully find a single root. Hereafter one descends to a polynomial of lower de-
gree — and successively decends to a polynomial of fourth degree or lower for which
one can find the remaining roots.

Let us at the outset maintain that when you want to find the roots of a polynomial
P(z) , you should solve the corresponding polynomial equation P(z) = 0 . As a simple
illustration we can look at the root of an arbitrary first-degree polynomial:

P(z) = az + b .

To find this we shall solve the equation

az + b = 0 .

this is not difficult. It has the solution z0 = −b
a

which therefore is a root of P(z) .

Finding the roots of a polynomial P , is tantamount to finding the solutions to
the polynomial equation P(z) = 0 .

Example 2.18 The Root of a Linear Polynomial

Find the root of a linear polynomial P given by

P(z) = (1− i) z− (5 + 2i) .

We shall solve the following equation

(1− i) z− (5 + 2i) = 0 ⇔ (1− i) z = (5 + 2i) .

We isolate z on the left-hand side:

z =
5 + 2i
1− i

=
(5 + 2i)(1 + i)
(1− i)(1 + i)

=
3 + 7i

2
=

3
2
+

7
2

i .

Hence the equation has the solution z0 =
3
2
+

7
2

i that also is the root of P.



eNote 2 2.4 POLYNOMIAL EQUATIONS 13

2.4.1 Binomial Equations

A binomial equation is an equation of the degree n in which only the coefficients an
(the term of highest degree) and a0 (the constant term) are different from 0 . A given
binomial equation can only be simplified to the following form:

Definition 2.19 Binomial Equation

A binomial equation has the form zn = w where w ∈ C and n ∈N .

For binomial equations an explicit solution formula exists, which we present in the fol-
lowing theorem.

Theorem 2.20 Binomial Equations Solved by Use of the Exponential
Form

Let w 6= 0 be a complex number with the exponential form

w = |w| eiv .

The binomial equation
zn = w (2-11)

has n different solutions given by the formula

zp = n
√
|w| ei( v

n+p 2π
n ) where p = 0 , 1 , . . . , n− 1 . (2-12)

Proof

For every p ∈ {0, 1, . . . , n− 1} zp = n
√
|w| ei( v

n+p 2π
n ) is a solution to (2-11), since

(zp)
n =

(
n
√
|w|ei( v

n+p 2π
n )

)n

= |w| ei(v+p 2π) = |w| eiv = w.

It is seen that the n solutions viewed as points in the complex plane all lie on a circle with
centre at z = 0, radius n

√
|w| and a consecutive angular distance of 2π

n . In other words the
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connecting lines between z = 0 and the solutions divide the circle in n angles of the same
size.

From this it follows that all n solutions are mutually different. That there are no more solu-
tions is a consequence of the fundamental theorem of algebra – version 2, Theorem 2.11. By
this the theorem is proven.

�

In the next examples we will consider some important special cases of binomial equa-
tions.

Example 2.21 Binomial Equation of the Second Degree

We consider a complex number in the exponential form w = |w| eiv . It follows from (2-12)
that the quadratic equation

z2 = w

has two solutions
z0 =

√
|w| ei v

2 and z1 = −
√
|w| ei v

2 .

Example 2.22 Binomial Equation of the Second Degree with a Negative
Right-Hand Side

Let r be an arbitrary positive real number. By putting v = Arg(−r) = π in Example 2.21 it
is seen that the binomial of the second degree

z2 = −r

has two solutions
z0 = i

√
r og z1 = −i

√
r .

As a concrete example the equation z2 = −16 has the solutions z = ±i 4 .

Sometimes the method used in Example 2.21 can be hard to carry out. In the following
example we show an alternative method.
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Example 2.23 Binomial Equation of the Second Degree, Method 2

Solve the equation
z2 = 8− 6i . (2-13)

Since we expect the solution to be complex we put z = x+ iy where x and y are real numbers.
If we can find x and y, then we have found the solutions for z. Therefore we have z2 =

(x + iy)2 = x2 − y2 + 2xyi and we see that (2-13) is equivalent to

x2 − y2 + 2xyi = 8− 6i .

Since a complex equation is true exactly when both the real parts and the imaginary parts of
the right-hand and the left-hand sides of the equation are identical, (2-13) is equivalent to

x2 − y2 = 8 and 2xy = −6 . (2-14)

If we put y =
−6
2x

= −3
x

in x2 − y2 = 8 , and put x2 = u , we get a quadratic equation that
can be solved:

x2 −
(
−3

x

)2

= 8⇔ x2 − 9
x2 = 8⇔(

x2 − 9
x2

)
x2 = 8x2 ⇔ x4 − 9 = 8x2 ⇔ x4 − 8x2 − 9 = 0⇔

u2 − 8u− 9 = 0⇔ u = 9 or u = −1 .

The equation x2 = u = 9 has the solutions x1 = 3 and x2 = −3, while the equation
x2 = u = −1 has no solution, since x and y are real numbers. If we put x1 = 3 respective
x2 = −3 in (2-14), we get the corresponding y-values y1 = −1 and y2 = 1 .

From this we conclude that the given equation (2-13) has the roots

z1 = x1 + iy1 = 3− i and z2 = x2 + iy2 = −3 + i .
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2.4.2 Quadratic Equations

For the solution of quadratic equations we state below the formula that corresponds
to the well-known solution formula for real quadratic equations. There is a single de-
viation, viz. we do not compute the square-root of the discriminant since we in this
theorem do not presuppose knowledge of square-roots of complex numbers.

Theorem 2.24 Solution Formula for Quadratic Equation

For the quadratic equation

az2 + bz + c = 0 , a 6= 0 (2-15)

we introduce the discriminant D by D = b2 − 4ac . The equations has two solutions

z1 =
−b− w0

2a
og z2 =

−b + w0

2a
(2-16)

where w0 is a solution to the binomial equation of the second degree w2 = D .

If in particular D = 0 , we have that z1 = z2 =
−b
2a

.



eNote 2 2.4 POLYNOMIAL EQUATIONS 17

Proof

Let w0 be an arbitrary solution to the binomial equation w2 = D . We then have:

az2 + bz + c = a
(

z2 +
b
a

z +
c
a

)
= a

((
z +

b
2a

)2

− b2

4a2 +
c
a

)

= a

((
z +

b
2a

)2

− b2 − 4ac
4a2

)

= a

((
z +

b
2a

)2

− D
4a2

)

= a

((
z +

b
2a

)2

− w2
0

4a2

)

= a
((

z +
b

2a

)
+

w0

2a

) ((
z +

b
2a

)
− w0

2a

)
= a

(
z +

b + w0

2a

) (
z +

b− w0

2a

)
= 0

⇔ z =
−b− w0

2a
or z =

−b + w0

2a
.

By this the solution formula (2-16) is derived.

�

Example 2.25 Real Quadratic Equation with a Positive Value of the Dis-
criminant

Solve the following quadratic equation with real coefficients:

2z2 + 5z− 3 = 0 .

We identify the coefficients: a = 2, b = 5, c = −3 , and find the discriminant as:

D = 52 − 4 · 2 · (−3) = 49 .

It is seen that w0 = 7 is a solution to the binomial equation of the second degree w2 = D =
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49 . Now the solutions can be computed as:

z1 =
−5 + 7

2 · 2 =
1
2

and z2 =
−5− 7

2 · 2 = −3 . (2-17)

Example 2.26 Real Quadratic Equation with a Negative Discriminant

Solve the following quadratic equation with real coefficients:

z2 − 2z + 5 = 0 .

We identify the coefficients: a = 1, b = −2, c = 5 , and find the discriminant as:

D = (−2)2 − 4 · 1 · 5 = −16 .

According to Example 2.22 the solution to the binomial equation of the second degree w2 =

D = −16 is given by w0 = 4i . Now the solutions can be computed as:

z1 =
−(−2) + 4i

2 · 1 = 1 + 2i and z2 =
−(−2)− 4i

2 · 1 = 1− 2i . (2-18)

Example 2.27 A Quadratic Equation with Complex Coefficients

Solve the quadratic equation

z2 − (1 + i)z− 2 + 2i = 0 . (2-19)

First we identify the coefficients: a = 1, b = −(1 + i), c = −2 + 2i , and we find the discrimi-
nant:

D = (−(1 + i))2 − 4 · 1 · (−2 + 2i) = 8− 6i .

From Example 2.23 we know that the solution to the binomial equation w2 = D = 8− 6i is
w0 = 3− i . From this we find the solution to (2-19) as

z1 =
−(−(1 + i)) + (3− i)

2 · 1 = 2 and z2 =
−(−(1 + i))− (3− i)

2 · 1 = −1 + i . (2-20)
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2.4.3 Equations of the Third and Fourth Degree

From antiquity geometrical methods for the solution of (real) quadratic equations are
known. But not until A.D. 800 did algebraic solution formulae became known, through
the work (in Arabic) of the Persian mathematician Muhammad ibn Musa al-Khwarismes
famous book al-Jabr. In the West the name al-Khwarisme became the well-known word
algorithm, while the book title became algebra.

Three centuries later history repeated itself. Around A.D. 1100 another Persian math-
ematician (and poet) Omar Khayyám gave exact methods on how to find solutions to
real equations of the third and fourth degree by use of advanced geometrical methods.
As an example he solved the equation x3 + 200x = 20x2 + 2000 by intersecting a circle
with a hyperbola the equations of which he could derive from the equation of third de-
gree.

Omar Khayyám did not think it possible to draw up algebraic formulae for solutions to
equations of degree greater than two. He was proven wrong by the Italian Gerolamo
Cardano who in the 16th century published formulae for the solution of Equations of
the third and fourth degree.

Khayyáms methods and Cardanos formulae are beyond the scope of this eNote. Here
we only give — see the previous Example 2.9 and the following Example 2.28 — a few
examples by use of the “method of descent”, Theorem 2.6, on how one can find all so-
lutions to equations of degree greater that two if one in advance knows or can guess a
sufficient number of the solutions.

Example 2.28 An Equation of the Third Degree with an Initial Guess

Solve the equation of third degree

z3 − 3z2 + 7z− 5 = 0 .

It is easily guessed that 1 is a solution. By use of the algorithm of descent one easily gets the
factorization:

z3 − 3z2 + 7z− 5 = (z− 1)(z2 − 2z + 5) = 0 .

We know that 1 is a solution, the remaining solutions are found by solving the quadratic
equation

z2 − 2z + 5 = 0 ,

which, according to Example 2.26, has the solutions 1 + 2i and 1− 2i .
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Collectively the equation of the third degree has the solutions 1, 1 + 2i og 1− 2i .

2.5 Real Polynomials

The theory that has been unfolded in the previous section applies to all polynomials
with complex coefficients. In this section we present two theorems that only apply to
polynomials with real coefficients — that is the subset called the real polynomials. The
first theorem shows that non-real roots always appear in pairs.

Theorem 2.29 Roots in Real Polynomials

If the number a + ib is a root of the polynomial that only has real coefficients, then
also the conjugate number a− ib is a root of the polynomial.

Proof

Let
P(z) = an zn + an−1 zn−1 + · · ·+ a1 z + a0

be a real polynomial. By use of the arithmetic rules for conjugation of the sum and prod-
uct of complex numbers (see eNote 1 about complex numbers) with the condition that all
coefficients are real, we get

P(z) = an zn + an−1 zn−1 + · · ·+ a1 z + a0

= an zn + an−1 zn−1 + · · ·+ a1 z + a0

= P(z) .

If z0 is a root of P , we get
P(z0) = 0 = 0 = P(z0)

from which it is seen that z0 is also a root. Thus the theorem is proven.

�
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Example 2.30 Conjugated Roots

Given that the polynomial

P(z) = 3z2 − 12z + 39 (2-21)

has the root 2− 3i . Determine all roots of P , and write P in a complete factorized
form.

We see that all the three coefficients in P are real. Therefore the conjugate of the given root
2 + 3i is also a root of P . Since P is a quadratic polynomial, there are no more roots.

According to Example 2.12 the complete factorized form for P : is

P(z) = 3 (z− (2− 3i))(z− (2 + 3i)) .

In the complete factorized form of a polynomial it is always possible to multiply the
two factors that correspond to a pair of conjugated roots such that the product forms a
real quadratic polynomial in this way:

(z− (a + ib))(z− (a− ib)) = ((z− a) + ib))((z− a)− ib)

= (z− a)2 − (ib)2

= z2 − 2az + (a2 + b2) .

From Theorem 2.29 we know that complex roots always are present in conjugated pairs.
This leads to the following theorem:

Theorem 2.31 Real Factorization

A real polynomial can be written as a product of real polynomials of the first degree
and real quadratic polynomials without any real roots.
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Example 2.32 Real Factorization

Given that a real polynomial of seventh degree P has the roots 1, i, 1 + 2i as well
as the double root −2 , and that the coefficient to its term of the highest degree is
a7 = 5 . Write P as a product of real linear and real quadratic polynomials without
real roots.

We use the fact that the conjugates of the complex roots are also roots and write P in its
complete factorized form:

P(z) = 5 (z− 1)(z− i)(z + i)(z− (1 + 2i))((z− (1− 2i))(z− 2)2 .

Two pairs of factors correspond to conjugated roots. When we multiply these we obtain the
form we wanted:

P(z) = 5 (z− 1)(z2 + 1)(z2 − 2z + 5)(z− 2)2 .

By this we end the treatment of polynomials in one variable.
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