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eNote 1

Complex Numbers

In this eNote we introduce and investigate the set of numbers C , the complex numbers. Since
C is considered to be an extension of R , the eNote presumes general knowledge of the real
numbers, including the elementary real functions such as the trigonometric functions and the
natural exponential function. Finally elementary knowledge of vectors in the plane is taken for
granted.

Updated 22.09.21. by David Brander. Version 29.05.16. by Karsten Schmidt.

1.1 Introduction

A simple quadratic equation such as x2 = 25 has two real solutions, viz.

x = 5 and x = −5 ,

since 52 = 25 and (−5)2 = 25 . Likewise the equation x2 = 2 has two solutions, viz.

x =
√

2 and x = −
√

2 ,

since
√

2 2 = 2 and (−
√

2) 2 = 2 .

In the two examples above the right-hand sides were positive. When considering the
equation

x2 = k , k ∈ R

we must be more careful; here everything depends on the sign of k . If k ≥ 0, the
equation has the solutions

x =
√

k and x = −
√

k ,
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since
√

k 2 = k and (−
√

k) 2 = k . But if k < 0 the equation has no solutions, since real
numbers with negative squares do not exist.

But now we ask ourselves the question, is it possible to imagine a set of numbers larger
than the set of real numbers; a set that includes all the real numbers but in addition also
includes solutions to an equation like

x2 = −1?

The equation should then in analogy to the equations above have two solutions

x =
√
−1 and x = −

√
−1 .

Let us be bold and assume that this is in fact possible. We then choose to call this number
i =
√
−1. The equation x2 = −1 then has two solutions, viz.

x = i and x = −i

since, if we assume that the usual rules of algebra hold,

i2 =
√
−1

2
= −1 and (−i)2 = (−1 ·

√
−1 ) 2 = (−1)2(−

√
−1)2 = −1 .

As we just mentioned, we make the further demand on the hypothetical number i , that
one must be able to use the same algebraic rules that apply to the real numbers. We
must e.g. be able to multiply i by a real number b and add this to another real number
a. In this way a new kind of number z of the type

z = a + ib , (a, b) ∈ R2

emerges.

Below we describe how these ambitions about a larger set of numbers can be fulfilled.
We look at how the structure of the set of numbers should be and at which rules apply.
We call this set of numbers the complex numbers and use the symbol C . R must be a
proper subset of C — that is, C contains all of R together with the new numbers which
fulfill the above ambitions that are impossible in R. As we have already hinted C must
be two-dimensional in the sense that a complex number contains two real numbers, a and
b.

1.2 Complex Numbers Introduced as Pairs of Real
Numbers

The common way of writing a complex number z is

z = a + ib , (1-1)
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where a and b are real numbers and i is the new imaginary number that satisfies i2 = −1 .
This form is very practical in computation with complex numbers. But we have not re-
ally clarified the meaning of the expression (1-1). For what is the meaning of a product
like ib , and what does the addition a + ib mean?

A satisfactory way of introducing the complex numbers is as the set of pairs of real num-
bers (a, b). In this section we will show how in this set we can define arithmetic opera-
tions (addition, subtraction, multiplication and division) that fulfill the ordinary arith-
metic rules for real numbers. This will turn out to give full credit to the form (1-1).

Definition 1.1 The Complex Numbers

The complex numbers C are defined as the set of ordered pairs of real numbers:

C = {(a, b) | a, b ∈ R} (1-2)

equipt with the arithmetic rules described below.

As the symbol for an arbitrary complex number we will use the letter z .

Example 1.2

Here we show five different complex numbers:

z1 = (2, 7) , z2 = (7, 2) , z3 = (0, 1) , z4 = (−5, 0) , z5 = (0, 0) .

First we introduce the arithmetic rule for the addition of complex numbers. Then sub-
traction as a special form of addition.
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Definition 1.3 Addition of Complex Numbers

Let z1 = (a, b) and z2 = (c, d) be two complex numbers.

The sum z1 + z2 is defined as

z1 + z2 = (a, b) + (c, d) = (a + c, b + d) . (1-3)

Example 1.4 Addition

For the two complex numbers z1 = (2, 7) and z2 = (4,−3) we have:

z1 + z2 = (2, 7) + (4,−3) = (2 + 4, 7 + (−3)) = (6, 4) .

The complex number (0, 0) is neutral with respect to addition, since for every complex
number z = (a, b) we have:

z + (0, 0) = (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) = z .

It is evident that (0, 0) is the only complex number that is neutral with respect to addi-
tion.

For every complex number z there exists an additive inverse (also calld opposite number)
denoted −z, which, when added to z, gives (0, 0). The complex number z = (a, b) has
the additive inverse −z = (−a,−b), since

(a, b) + (−a,−b) = (a + (−a), b + (−b)) = (a− a, b− b) = (0, 0) .

It is clear that (−a,−b) is the only additive inverse for z = (a, b), so the notation −z
is well-defined. By use of this, subtraction of complex numbers can be introduced as a
special form of addition.
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Definition 1.5 Subtraction of Complex Numbers

For the two complex numbers z1 and z2 the difference z1 − z2 is defined as the sum
of z1 and the additive inverse for z2 :

z1 − z2 = z1 + (−z2) . (1-4)

Let us for two arbitrary complex numbers z1 = (a, b) and z2 = (c, d) calculate the
difference z1 − z2 using definition 1.5:

z1 − z2 = (a, b) + (−c,−d) = (a + (−c), b + (−d)) = (a− c, b− d) .

This gives the simple formula

z1 − z2 = (a− c, b− d) . (1-5)

Example 1.6 Subtraction of Complex Numbers

For the two complex numbers z1 = (5, 2) and z2 = (4,−3) we have:

z1 − z2 = (5− 4, 2− (−3)) = (1, 5) .

While addition and subtraction appear to be simple and natural, multiplication and
division of complex numbers appear to be more odd. Later we shall see that all the
four arithmetic rules have geometrical equivalents in the so-called complex plane that
constitutes the graphical representation of the complex numbers. But first we must
accept the definitions at their face value. First we give the definition of multiplication.
Then follows the definition of division as a special form of multiplication.

Definition 1.7 Multiplication of Complex Numbers

Let z1 = (a, b) and z2 = (c, d) be two complex numbers.

The product z1 z2 is defined as

z1 z2 = z1 · z2 = (ac− bd, ad + bc) . (1-6)
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Example 1.8 Multiplication of Complex Numbers

For the two complex numbers z1 = (2, 3) and z2 = (1,−4) we have:

z1 z2 = (2, 3) · (1,−4) = (2 · 1− (3 · (−4)), 2 · (−4) + 3 · 1) = (14,−5) .

The complex number (1, 0) is neutral with respect to multiplication, since for every com-
plex number z = (a, b) we have that:

z · (1, 0) = (a, b) · (1, 0) = (a · 1− b · 0 , a · 0 + b · 1) = (a, b) = z .

It is clear that (1, 0) is the only complex number that is neutral with respect to multipli-
cation.

For every complex number z apart from (0, 0) there exists a unique reciprocal number
that when multiplied by the given number gives (1, 0). It is denoted 1

z . The complex
number (a, b) has the reciprocal number

1
z
=

(
a

a2 + b2 , − b
a2 + b2

)
, (1-7)

since

(a, b) ·
(

a
a2 + b2 ,− b

a2 + b2

)
=

(
a2

a2 + b2 +
b2

a2 + b2 , − ab
a2 + b2 +

ba
a2 + b2

)
= (1, 0) .

Exercise 1.9

Show that every complex number z 6= (0, 0) has exactly one reciprocal number.

By the use of reciprocal numbers we can now introduce division as a special form of
multiplication.
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Definition 1.10 Division of Complex Numbers

Let z1 and z2 be arbitrary complex numbers, where z2 6= (0, 0).

The quotient
z1

z2
is defined as the product of z1 and the reciprocal number

1
z2

for z2 :

z1

z2
= z1 ·

1
z2

. (1-8)

Let us for two arbitrary complex numbers z1 = (a, b) and z2 = (c, d) 6= (0, 0) compute
the quotient

z1

z2
from the Definition 1.10:

z1 ·
1
z2

= (a, b)
(

c
c2 + d2 , − d

c2 + d2

)
=

(
ac + bd
c2 + d2 ,

bc− ad
c2 + d2

)
.

From this we get the following formula for division:

z1

z2
=

(
ac + bd
c2 + d2 ,

bc− ad
c2 + d2

)
. (1-9)

Example 1.11 Division of Complex Numbers

Consider two complex numbers z1 = (1, 2) and z2 = (3, 4).

z1

z2
=

(
1 · 3 + 2 · 4

32 + 42 ,
2 · 3− 1 · 4

32 + 42

)
=

(
11
25

,
2
25

)
.

We end this section by showing that the complex numbers, with the above arithmetic
operations, fulfill the computational rules known from the real numbers.
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Theorem 1.12 Properties of Complex Numbers

The complex numbers fulfill the following computational rules:

1. Commutative rule for addition: z1 + z2 = z2 + z1

2. Associative rule for addition: (z1 + z2) + z3 = z1 + (z2 + z3)

3. The number (0, 0) is neutral with respect to addition

4. Every z has an opposite number −z where z + (−z) = (0, 0)

5. Commutative rule for multiplication: z1 z2 = z2 z1

6. Associative rule for multiplication: (z1 z2) z3 = z1 (z2 z3)

7. The number (1, 0) is neutral with respect to multiplication

8. Every z 6= (0, 0) has a reciprocal number
1
z

where z · 1
z
= (1, 0)

9. Distributive rule: z1 (z2 + z3) = z1 z2 + z1 z3

Proof

Let us look at property 1, the commutative rule. Given two complex numbers z1 = (a, b) and
z2 = (c, d). We see that

z1 + z2 = (a + c, b + d) = (c + a, d + b) = z2 + z1 .

To establish the second equality sign we have used that for both the first and the second
coordinates the commutative rule for addition of real numbers applies. By this it is seen that
the commutative rule also applies to complex numbers.

In the proof of the properties 2, 5, 6 and 9 we similarly use the fact that the corresponding
rules apply to the real numbers. The details are left to the reader. For the properties 3, 4, 7
and 8 we refer to treatment above in this section.

�
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(a,b)(0,b)

(a,0)

(0,1)

(1,0)(0,0)

Y

X

Figure 1.1: Six complex numbers in the (x, y)-plane

1.3 Complex Numbers in Rectangular Form

Since to every ordered pair of real numbers corresponds a unique point in the (x, y)-
plane and vice versa, C can be considered to be the set of points in the (x, y)-plane.
Figure 1.1 shows six points in the (x, y)-plane, i.e. six complex numbers.

In the following we will change our manner of writing complex numbers.

First we identify all complex numbers of the type (a, 0), i.e. the numbers that lie on the
x-axis, with the corresponding real number a . In particular the number (0, 0) is written
as 0 and the number (1, 0) as 1 . Note that this will not be in conflict with the arithmetic
rules for complex numbers and the ordinary rules for real numbers, since

(a, 0) + (b, 0) = (a + b, 0 + 0) = (a + b, 0)

and
(a, 0) · (b, 0) = (a · b− 0 · 0 , a · 0 + 0 · b) = (ab, 0) .

In this way the x-axis can be seen as an ordinary real number axis and is called the real
axis. In this way the real numbers can be seen as a subset of the complex numbers. That
the y-axis is called the imaginary axis is connected to the extraordinary properties of the
complex number i which we now introduce and investigate.
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Definition 1.13 The Number i

By the complex number i we understand the number (0, 1) .

A decisive motivation for the introduction of complex numbers was the wish
for a set of numbers that contained the solution to the equation

x2 = −1 .

With the number i we have got such a solution because:

i2 = i · i = (0, 1) · (0, 1) = (0 · 0− 1 · 1 , 0 · 1 + 1 · 0) = (−1, 0) = −1 .

Theorem 1.14 Complex Numbers in Rectangular Form

Every complex number z = (a, b) can be written in the form

z = a + i · b = a + ib . (1-10)

This way of writing the complex number is called the rectangular form of z .

Proof

The proof consists of simple manipulations in which we use the new way of writing numbers
of this type.

(a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1) · (b, 0) = a + i b .

�
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Imaginary Axis

Real Axis

1

Figure 1.2: Six complex numbers in rectangular form in the complex number plane

Since 0 = (0, 0) is neutral with respect to addition, and 1 = (1, 0) is neutral
with respect to multiplication, the following identities apply:

0 + z = z and 1z = z .

Furthermore it is easily seen that

0z = 0 .

Let us now consider all complex numbers of the type (0, b) . Since

(0, b) = 0 + ib = ib ,

i can be understood as the unit of the y-axis, and therefore we refer to i as the imaginary
unit. From this comes the name the imaginary axis for the y-axis.

In Figure 1.2 we see an update of the situation from Figure 1.1, where numbers are given
in their rectangular form.

All real numbers are complex but not all complex numbers are real!
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Method 1.15 Computation Using the Rectangular form

A decisive advantage arising from the rectangular form of complex numbers is that
one does not have to remember the formulas for the arithmetic rules for addition,
subtraction, multiplication and division given in the definitions 1.3, 1.5, 1.7 and 1.10.
All computations can be carried out by following the usual arithmetic rules for real
numbers and treating the number i as one would treat a real variable — with the
difference, though, that we replace i2 by −1 .

In the following example it is shown how multiplication can be carried out through
ordinary computation with the rectangular form of the factors.

Example 1.16 Multiplication Using the Rectangular Form

We compute the product of two complex numbers given in rectangular form z1 = a + ib and
z2 = c + id :

z1z2 = (a + ib)(c + id) = ac + iad + ibc + i2bd = ac + iad + ibc− bd

= (ac− bd) + i(ad + bc) .

The result corresponds to the definition, see Definition 1.7!

Exercise 1.17

Prove that the following rule for real numbers — the so-called zero rule — also applies to
complex numbers: "‘A product is 0 if and only if at least one of factors is 0 ."’
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Remark 1.18 Powers of Complex Numbers

The property 6 in Theorem 1.12 gives us the possibility to introduce integer powers
of complex numbers, corresponding to integer powers of real numbers. In the fol-
lowing let n be a natural number.

1. z1 = z , z2 = z · z , z3 = z · z · z etc.

2. By definition z0 = 1 .

3. Finally we put z−n =
1
zn .

It is easily shown that the usual rules for computations with integer powers of real
numbers also apply for integer powers of complex numbers:

zn zm = zn+m and (zn)m = zn m .

We end this section by introducing the concepts real part and imaginary part of complex
numbers.

Definition 1.19 Real Part and Imaginary Part

Given a complex number z in rectangular form z = a + ib . By the real part of z we
understand the real number

Re(z) = Re(a + ib) = a , (1-11)

and by the imaginary part of z we understand the real number

Im(z) = Im(a + ib) = b . (1-12)
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The expression rectangular form refers to the position of the number in the com-
plex number plane, where Re(z) is the number’s perpendicular drop point on
the real axis, and Im(z) its perpendicular drop point on the imaginary axis. In
short the real part is the first coordinate of the number while the imaginary
part is the second coordinate of the number.

Note that every complex number z can be written in rectangular form like this:

z = Re(z) + i Im(z) .

Example 1.20 Real Part and Imaginary Part

Three complex numbers are given by

z1 = 3− 2i , z2 = i5 , z3 = 25 + i .

Find the real part and the imaginary part of each number.

Re(z1) = 3 , Im(z1) = −2

Re(z2) = 0 , Im(z2) = 5

Re(z3) = 25 , Im(z3) = 1

Two complex numbers in rectangular form are equal if and only if both their
real parts and imaginary parts are equal.
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1.4 Conjugation of Complex Numbers

Definition 1.21 Conjugation

Let z be a complex number with the rectangular form z = a + ib . By the conjugated
number corresponding to z we understand the complex number z given by

z = a− ib . (1-13)

Conjugating a complex number corresponds to reflecting the number in the real axis as
shown in Figure 1.3.

Figure 1.3: Reflection in the real axis

It is obvious that the conjugate number of a conjugate number is the original number:

z = z . (1-14)

Furthermore the following useful formula for the product of complex number and its
conjugate applies:

z · z = | z |2 (1-15)

which is shown by simple calculation.
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In the following method we show a smart way of finding the rectangular form of a
fraction when the denominator is not real: we use the fact that the product of a number
z = a + ib and its conjugate z = a− ib is always a real number, cf. (1-15).

Method 1.22 Finding the rectangular form of a complex fraction

The way to remember: Multiply the numerator and the denominator by the conjugate of
the denominator. Here the denominator is written in its rectangular form:

z
a + ib

=
z(a− ib)

(a + ib)(a− ib)
=

z(a− ib)
a2 + b2 .

An example:

2− i
1 + i

=
(2− i)(1− i)
(1 + i)(1− i)

=
1− 3i

12 + 12 =
1− 3i

2
=

1
2
− 3

2
i .

In conjugation in connection with the four ordinary arithmetic operations the following
rules apply.

Theorem 1.23 Arithmetic Rules for Conjugation

1. z1 + z2 = z1 + z2

2. z1 − z2 = z1 − z2

3. z1 · z2 = z1 · z2

4. (z1/z2) = z1/z2 , z2 6= 0 .
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Proof

The proof is carried out by simple transformation using the rectangular form of the numbers.
As an example we show the first formula. Suppose that z1 = a1 + ib1 and z2 = a2 + ib2 . Then:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

= (a1 + a2)− i(b1 + b2) = (a1 − ib1) + (a2 − ib2)

= z1 + z2 .

�

Finally we note that all complex numbers on the real axis are identical with their con-
jugate number and that they are the only complex numbers that fulfill this condition.
Therefore we can state a criterion for whether a given number in a set of complex num-
bers is real:

Theorem 1.24 The Real Criterion

Let A be a subset of C , and let AR denote the subset of A that consists of real num-
bers. Then:

AR = {z ∈ A | z = z} .

Proof

Let z be an arbitrary number in A ⊆ C with rectangular form z = a + ib . Then:

z = z⇔ a− ib = a + ib⇔ 2ib = 0⇔ b = 0⇔ z ∈ AR .

�
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1.5 Polar Coordinates

The obvious way of stating a point (or a position vector) in an ordinary (x, y)-coordinate
system is by the point’s rectangular, i.e. orthogonal, coordinates (a, b). In many situations
it is, however, useful to be able to determine a point by its polar coordinates, consisting of
its distance to (0, 0) together with its direction angle from the x-axis to its position vector.
The direction angle is then positive if it is measured counter-clockwise and negative if
measured clockwise.

Analogously, we now introduce polar coordinates for complex numbers. Let us first be
absolutely clear about the orientation of the complex number plane.

Definition 1.25 Orientation of the Complex Number Plane

The orientation of the complex number plane is determined by a circle with its centre
at the origen being traversed counter-clockwise.

Im

Re0

The ingredients in the polar coordinates of complex numbers are (as mentioned above)
its distance to (0, 0) called the absolute value, and its direction angle called the argument.
We now introduce these two quantities.
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Definition 1.26 Absolute Value and Argument

Given a complex number z .

By the absolute value of z we understand the length of the corresponding position
vector. The absolute value is written | z | and is also called the modulus or numerical
value.

Suppose z 6= 0 . Every angle from the positive part of the real axis to the position
vector for z is called an argument for z and is denoted arg(z) . The angle is positive
or negative relative to the orientation of the complex number plane.

z

arg(z)

|z|

Im

Re0

The pair (
| z | , arg(z)

)
of the absolute value of z and an argument for z will collectively be called the polar
coordinates of the number.

Note that the argument for a number z is not unique. If you add 2π to an
arbitrary argument for z, you get a new valid direction angle for z and there-
fore a valid argument. Therefore a complex number has infinitely many argu-
ments corresponding to turning an integer number of times extra clockwise or
counter-clockwise in order to reach the same point again.

You can always choose an argument for z that lies in the interval from −π to π. Tradi-
tionally this argument is given a preferential position. It is called the principal value of
the argument.
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Definition 1.27 Principal Value

Given a complex number z that is not 0 . By the principal argument Arg(z) for z we
understand the uniquely determined argument for z that satisfies:

arg(z) ∈ ]− π, π ] .

We denoted the principal value with a capital initial Arg(z) as compared to
arg(z) that denotes an arbitrary argument. All arguments for a complex num-
ber z are then given by

arg(z) = Arg(z) + p · 2π , p ∈ Z . (1-16)

Two complex numbers are equal if and only if both their absolute values and
the principal arguments are equal.

Example 1.28 Principal Arguments

π

‐2

2‐2i‐2‐2i

‐2+2i 2+2i

_
_

3π

4

3π

4

π

4

π

4

Im

Re

The figure shows five complex numbers, four of which lie on the lines through (0, 0) bisecting
the four quadrants. We read:
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• 2 + 2i has the principal argument π
4 ,

• 2− 2i has the principal argument −π
4 ,

• −2 + 2i has the principal argument 3π
4 ,

• −2− 2i has the principal argument − 3π
4 , and

• −2 has the principal argument π .

Whether it is advantageous to use the rectangular format of the complex numbers or
their polar form depends on the situation at hand. In Method (1.29) it is demonstrated
how one can shift between the two forms.
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Method 1.29 Rectangular and Polar Coordinates

We consider a complex number z 6= 0 that has the rectangular form z = a + ib and
an argument v :

 v

|z|

i|z|

b

a

sin(v)

 cos(v)

i

0 1

|z|

z=a+ib

1. The rectangular form is computed from the polar coordinates like this:

a = |z| cos(v) and b = |z| sin(v) . (1-17)

2. The absolute value is computed from the rectangular form like this :

|z| =
√

a2 + b2 . (1-18)

3. An argument is computed from the rectangular form by finding an angle v
that satisfies both of the following equations:

cos(v) =
a
|z| and sin(v) =

b
|z| . (1-19)

When z is drawn in the first quadrant it is evident that the computational rules
(1-17) and (1-19) are derived from well-known formulas for cosine and sine to
acute angles in right-angled triangles and (1-18) from the theorem of Pythago-
ras. By using the same formulas it can be shown that the introduced methods
are valid regardless of the quadrant in which z lies.
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Example 1.30 From Rectangular to Polar Form

Find the polar coordinates for the number z = −
√

3 + i .

v
|z|

z = ‐  3 +i

Im

Re

0

We use the rules in Method 1.29. Initially we identify the real and the imaginary parts of z
as

a = −
√

3 and b = 1.

First we determine the absolute value:

| z | =
√

a2 + b2 =

√
(−
√

3) 2 + 12 =
√

3 + 1 = 2 .

Then the argument is determined. From the equation

cos(v) =
a
| z | = −

√
3

2

we get two possible principal arguments for z , viz.

v =
5π

6
and v = −5π

6
.

From the figure it is seen that z lies in the second quadrant, and the correct principal argument
must therefore be the first of these possibilities. But this can also be determined without
inspection of the figure, since also the equation

sin(v) =
1
2

must be fulfilled. From this we also get two possible principal arguments for z , viz.

v =
π

6
and v =

5π

6
.

Since only v =
5π

6
satisfies both equations, we see that Arg(z) =

5π

6
.
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Thus we have found the set of polar coordinates for z :

(
| z |, Arg(z)

)
=

(
2 ,

5π

6

)
.

We end this section with the important product rules for absolute values and arguments.

Theorem 1.31 The Product Rule for Absolute Values

The absolute value of the product of two complex numbers z1 and z2 is found by

| z1 · z2 | = | z1 | · | z2 | . (1-20)

From Theorem 1.31 we get the corollary

Corollary 1.32

The absolute value for the quotient of two complex numbers z1 and z2 where z2 6= 0
is found by ∣∣∣∣ z1

z2

∣∣∣∣ = | z1 |
| z2 |

. (1-21)

The absolute value of the nth power of a complex number z is for every n ∈ Z given
by

| z1
n | = | z1 |n . (1-22)

Exercise 1.33

Write down in words what the formulas (1-20), (1-21) and (1-22) say and prove them.
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Theorem 1.34 The Product Rule for Arguments

Given two complex numbers z1 6= 0 and z2 6= 0 (which also means z1 z2 6= 0) .
Then if v1 is an argument for z1 and v2 is an argument for z2 , then v1 + v2 is an
argument for the product z1 z2 .

Corollary 1.35

Given two complex numbers z1 6= 0 and z2 6= 0 .Then:

1. If v1 is an argument for z1 and v2 is an argument for z2 , then v1 − v2 is an
argument for the fraction

z1

z2
.

2. If v is an argument for z , then n · v is an argument for the power zn .

Exercise 1.36

Prove Theorem 1.34 and Corollary 1.35.

1.6 Geometric Understanding of the Four Computational
Operations

We started by introducing addition, subtraction, multiplication and division of complex
numbers as algebraic operations carried out on pairs of real numbers (a, b), see defini-
tions 1.3, 1.5, 1.7 and 1.10. Then we showed that the rectangular form of the complex
numbers a + ib leads to a more practical way of computation: One can compute with
complex numbers just as with real numbers, as long as the number i is treated as a real
parameter and it is understood that i2 = −1 . In this section we shall see that the com-
putational operations can also be viewed as geometrical constructs.

The first exact description of the complex numbers was given by the Norwegian sur-
veyor Caspar Wessel in 1796 . Wessel introduced complex numbers as line segments
with given lengths and directions, that is what we now call vectors in the plane. There-
fore computations with complex numbers were geometric operations carried out on
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z1+z2=(a+c)+i( b+d)

z2=c+id

z1=a+ib

i 

0 1

Figure 1.4: Addition by the method of parallelograms

vectors. In the following we recollect the ideas in the definition of Wessel. It is easy
to see the equivalence between the algebraic and geometric representations of addition
and subtraction — it is more demanding to understand the equivalence when it comes
to multiplication and division.

Theorem 1.37 Geometric Addition

Addition of two complex numbers z1 and z2 can be obtained geometrically in the
following way:

The position vector for z1 + z2 is the sum of the position vectors for z1 and
z2 . (See Figure 1.4).

Proof

Suppose that z1 and z2 are given in rectangular form as z1 = a + ib and z2 = c + id . Then
the position vector for z1 has the coordinates (a, b) and the position vector for z2 has the
coordinates (c, d) . The sum of the two position vectors is then (a + c, b + d) , being the coor-
dinates of the position vector for the complex number (a + c) + i(b + d) . Since we have that
z1 + z2 = (a + ib) + (c + id) = (a + c) + i(b + d) , we have proven the theorem.

�
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-z2=-c-id

z1-z2=(a-c)+i(b-d)

z2=c+id

z1=a+ib

i

0 1

Figure 1.5: Subtraction by the method of parallelograms

Geometric subtraction is given as a special form of geometric addition: The position
vector for z1− z2 is the sum of the position vectors for z1 and the opposite vector to the
position vector for z2 . This is illustrated in Figure 1.5

While in the investigation of geometrical addition (and subtraction) we have used the
rectangular form of complex numbers, in the treatment of geometric multiplication (and
division) we shall need their polar coordinates.

Theorem 1.38 Geometrical Multiplication

Given two complex numbers z1 and z2 that are both different from 0 (which also
means that z1 z2 6= 0) . Multiplication of z1 and z2 can be obtained geometrically
in the following way:

1. The absolute value of the product z1z2 is found by multiplication of
the absolute value of z1 by the absolute value of z2 .

2. An argument for the product z1z2 is found by adding an argument
for z1 and an argument for z2 .
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Proof

First part of the theorem appears from Theorem 1.31 while the second part is evident from
Theorem 1.34.

�

z1 z2

z2

z1

11π

12

π

4

2π

3

Im

Re
1/2 21

Figure 1.6: Multiplication

Example 1.39 Multiplication by Use of Polar Coordinates

Two complex numbers z1 and z2 are given by the polar coordinates
( 1

2 , π
4

)
and

(
2, 2π

3

)
, re-

spectively. (Figure 1.6,)

We compute the product of z1 and z2 by the use of their absolute values and arguments:

| z1z2 | = | z1 | | z2 | =
1
2
· 2 = 1

arg(z1z2) = arg(z1) + arg(z2) =
π

4
+

2π

3
=

11π

12
.

Thus the product z1z2 is the complex number that has the absolute value 1 and the argument
11π

12
.

Note that it is important to observe whether a set of coordinates is given in
rectangular or in polar form.
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z2

3 62

u-v

v

u

z1

z2

z1

Im

Re

Figure 1.7: Division

Example 1.40 Division by Use of Polar Coordinates

The numbers z1 and z2 are given by |z1| = 6 with arg(z1) = u and |z2| = 2 with arg(z2) = v
respectively. Then

z1

z2
can be determined as

∣∣∣∣ z1

z2

∣∣∣∣ = 6
2
= 3 and arg

(
z1

z2

)
= u− v .

1.7 The Complex Exponential Function

The ordinary exponential function x 7→ ex , x ∈ R has, as is well known, the character-
istic properties,

1. e0 = 1 ,

2. ex1+x2 = ex1 · ex2 for all x1, x2 ∈ R , and

3. (ex)n = enx for all n ∈ Z and x ∈ R .

In this section we will introduce a particularly useful extension of the real exponential
function to a complex exponential function, that turns out to follow the same rules of
computation as its real counterpart.
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Definition 1.41 Complex Exponential Function

By the complex exponential function expC we understand a function that to each
number z ∈ C with the rectangular form z = x + iy attaches the number

expC(z) = expC(x + iy) = ex · (cos(y) + i sin(y)) , (1-23)

where e (about 2.7182818 . . . ) is base for the real natural exponential function.

Since we for every real number x get

expC(x) = expC(x + i · 0) = ex (cos(0) + i sin(0)) = ex ,

we see that the complex exponential function is everywhere on the real axis identical to
the real exponential function. Therefore we do not risk a contradiction when we in the
following allow (and often use) the way of writing

expC(z) = ez for z ∈ C . (1-24)

y
ex

ez

Im

Re0

Figure 1.8: Geometric Interpretation of ez

We now consider the complex number ez where z is an arbitrary complex number with
the rectangular form z = x + iy . Then (by use of Theorem 1.31) we see that

|ez| = |ex (cos(y) + i sin(y))| = |ex| |(cos(y) + i sin(y))| = |ex| = ex . (1-25)

Furthermore (by use of Theorem 1.34) we see that

arg (ez) = arg (ex) + arg (cos(y) + i sin(y)) = 0 + y = y . (1-26)
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The polar coordinates for z = x + iy are then (ex, y) , which is illustrated in Figure 1.8.

For the trigonometric functions cos(x) and sin(x) we know that for every integer p
cos(x + p2π) = cos(x) and sin(x + p2π) = sin(x) . If the graph for cos(x) or sin(x) is
displaced by an arbitrary multiple of 2π , it will be mapped onto itself. Therefore the
functions are called periodic having a period of 2π .

A similar phenomenon is seen for the complex exponential function. It has the imaginary
period i 2π . This is closely connected to the periodicity of the trigonometric functions
as can be seen in the proof of the following theorem.

Theorem 1.42 Periodicity of ez

For every complex number z and every integer p:

ez+ip2π = ez . (1-27)

Proof

Suppose that z has the rectangular form z = x + iy and p ∈ Z .

Then:

ez+ip2π = ex+i(y+p2π)

= ex( cos(y + p2π) + i sin(y + p2π)
)
= ex( cos(y) + i sin(y)

)
= ez .

By this the theorem is proved.

�

In the following example the periodicity of the complex exponential function is illus-
trated.
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Example 1.43 Exponential Equation

Determine all solutions to the equation

ez = −
√

3 + i . (1-28)

First we write z in rectangular form: z = x+ iy . In Example 1.30 we found that the right-hand
side in (1-28) has the absolute value |z| = 2 and the principal argument v = 5π

6 . Since the left-
hand and the right-hand sides must have the same absolute value and the same argument,
apart from an arbitrary multiple of 2π , we get

| ez | = | −
√

3 + i | ⇔ ex = 2 ⇔ x = ln(2)

arg(ez) = arg(−
√

3 + i)⇔ y = v + p2π =
5π

6
+ p2π , p ∈ Z .

All solutions for (1-28) are then

z = x + iy = ln(2) + i
(

5π

6
+ p2π

)
, p ∈ Z .

We end this section by stating and proving the rule of computations mentioned in the
introduction and known from the real exponential function.

Theorem 1.44 Complex Exponential Function Computation Rules

1. e0 = 1

2. ez1+z2 = ez1 · ez2 for all z1, z2 ∈ C

3. (ez)n = enz for all n ∈ Z og z ∈ C

Proof

Point 1 in the theorem that e0 = 1, follows from the fact that the complex exponential function
is identical with the real exponential function on the real axis, cf. (1-24).
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In point 2 we set z1 = x1 + iy1 and z2 = x2 + iy2 . From the set of polar coordinates and 1.38
we get:

ez1 · ez2 = (ex1 , y1) · (ex2 , y2) = (ex1 · ex1 , y1 + y2) = (ex1+x2 , y1 + y2)

= e(x1+x2)+i(y1+y2) = e(x1+iy1)+(x2+iy2)

= ez1+z2 .

In point 3 we set z = x + iy and with the use of sets of polar coordinates and the repeated
use of Theorem 1.38 we get:

(ez)n = ((ex)n, n · y) = (en·x, n · y) = en·x+i·n·y = en(x+i·y)

= en·z .

By this the Theorem is proved.

�

Exercise 1.45

Show that for every z ∈ C ez 6= 0 .

1.8 The Exponential Form of Complex Numbers

Let v be an arbitrary real number. If we substitute the pure imaginary number iv into
the complex exponential function we get from the Definition 1.41:

eiv = e0+iv = e0 (cos(v) + i sin(v)) ,

which yields the famous Euler’s formula.

Theorem 1.46 Euler’s Formula

For every v ∈ R :
eiv = cos(v) + i sin(v) . (1-29)
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cos(v)

isin(v)eiv

v

1

Im

Re
0

Figure 1.9: The number eiv in the complex number plane

By use of the definition of the complex exponential function, see Definition
1.41, we derived Euler’s formula. In return we can now use Euler’s formula to
write the complex exponential function in the convenient form

ez = ex( cos(y) + i sin(y)
)
= exeiy . (1-30)

The two most-used ways of writing complex numbers both in pure and applied math-
ematics are the rectangular form (as is frequently used above) and the exponential form.
In the exponential form the polar coordinates of the number (absolute value and argu-
ment), in connection with the complex exponential function. Since the polar coordinates
appear explicitly in this form, it is also called the polar form.

Theorem 1.47 The Exponential Form of Complex Numbers

Every complex number z 6= 0 can be written in the form

z = |z| eiv , (1-31)

where v is an argument for z . This way of writing is called the exponential form (or
the polar form) of the number.
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Proof

Let v be an argument for the complex number z 6= 0 , and put r = |z| . We show that reiv has
the same absolute value and argument as z , and thus the two numbers are identical:

1. ∣∣reiv∣∣ = |r| ∣∣eiv∣∣ = r .

2. Since 0 is an argument for r, and v is an argument for eiv , we have that 0 + v = v is an
argument for the product reiv .

�

Method 1.48 Computations Using the Exponential Form

A decisive advantage of the exponential form of complex numbers is that one does
not have to think about the rule of computations for multiplication, division and
powers when the polar coordinates are used, see Theorem 1.31, Corollary 1.32 and
Theorem 1.34. All computations can be carried out using the ordinary rules of com-
putation on the exponential form of the numbers.

We now give an example of multiplication following Method 1.48; cf. Example 1.39.

Example 1.49 Multiplication in Exponential Form

Two complex numbers are given in exponential form,

z1 =
1
2

e
π
4 i and z2 = 2 e

3π
2 i .

The product of the numbers is found in exponential form as

z1z2 =
(1

2
e

π
4 i)(2 e

3π
2 i) = (

1
2
· 2)e π

4 i+ 3π
2 i = 1ei( π

4 +
3π
2 ) = e

7π
4 i .
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Exercise 1.50

Show that Method 1.48 is correct.

In the following we will show how so-called binomial equations can be solved by the use
of the exponential form. A binomial equation is an equation with two terms in the form

zn = w , (1-32)

where w ∈ C and n ∈ N . Binomial equations are described in more detail in eNote 2
about polynomials.

First we show an example of the solution of a binomial equation by use of the exponen-
tial form and then we formulate the general method.

Example 1.51 Binomial Equation in Exponential Form

Find all solutions to the binomial equation

z4 = −8 + 8
√

3 i . (1-33)

The idea is that we write both z and the right-hand side in exponential form.

If z has the exponential form z = seiu , then the equation’s left-hand side can be computed as

z4 = (seiu)4 = s4 (eiu)4 = s4 ei4u . (1-34)

The right-hand side is also written in exponential form. The absolute value r of the right-hand
side is found by

r = | − 8 + 8
√

3 i | =
√
(−8)2 + (8

√
3)2 = 16 .

The argument v of the right-hand side satisfies

cos(v) =
−8
16

= −1
2

and sin(v) =
8
√

3
16

=

√
3

2
.

By use of the two equations the principal argument of the right-hand side can be determined
to be

v = arg(−8 + 8
√

3i) =
2π

3
,



eNote 1 1.8 THE EXPONENTIAL FORM OF COMPLEX NUMBERS 37

and so the exponential form of the right-hand side is

reiv = 16e
2π
3 i . (1-35)

We now substitute (1-34) and (1-35) into (1-33) in order to replace the right- and left-hand
side with the exponential counterparts

s4 ei4u = 16e
2π
3 i .

Since the absolute value of the left-hand side must be equal to absolute value of the right-
hand side we get

s4 = 16 ⇔ s = 4
√

16 = 2 .

The argument of the left-hand side 4u and the argument of the right-hand side 2π
3 must be

equal apart from a multiple of 2π . Thus

4u =
2π

3
+ p2π ⇔ u =

π

6
+ p

π

2
, p ∈ Z .

These infinitely many arguments correspond, as we have seen earlier, to only four half-lines
from (0, 0) determined by the arguments obtained by putting p = 0, p = 1, p = 2 and p =

3 . For any other value of p the corresponding half-line will be identical to one of the four
mentioned above. E.g. the half-line corresponding to p = 4 has the argument

u =
π

6
+ 4

π

2
=

π

6
+ 2π ,

i.e. the same half-line that corresponds to p = 0 , since the difference in argument is a whole
revolution, that is 2π .

Therefore the given equation (1-33) has exactly four solutions that lie on the four mentioned
half-lines and that are separated the distance s = 2 from 0 . Stated in exponential form:

z = 2 ei( π
6 +p π

2 ) , p = 0 , 1 , 2 , 3 .

Or each recomputed to rectangular form by means of Euler’s formula (1-29):

z0 =
√

3 + i , z1 = −1 + i
√

3 , z2 = −
√

3− i , z3 = 1− i
√

3 .

All solutions to a binomial equation lie on a circle with the centre at 0 and radius equal
to the absolute value of the right-hand side. The connecting lines between 0 and the
solutions divide the circle into equal angles. This is illustrated in Figure 1.10 which
shows the solutions to the equation of the fourth degree from Example 1.51.
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z2

z3

z1

z0
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Re
0

Figure 1.10: The four solutions for z4 = −8 + 8
√

3i

The method in Example 1.51 we now generalize in the following theorem. The theorem
is proved in eNote 2 about polynomials.

Theorem 1.52 Binomial Equation Solved Using the Exponential Form

Given a complex number w that is different from 0 and that has the exponential
form

w = |w| eiv .

The binomial equation
zn = w , n ∈N (1-36)

has n solutions that can be found with the formula

z = n
√
|w| ei( v

n+p 2π
n ) , where p = 0 , 1 , . . . , n− 1 . (1-37)

Exercise 1.53 Binomial Equation with a Negative Right-Hand Side

Let r be an arbitrary positive real number. Show by use of Theorem 1.52 that the binomial
quadratic equation

z2 = −r

has the two solutions
z0 = i

√
r and z1 = −i

√
r .
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1.9 Linear and Quadratic Equations

Let a and b be complex numbers with a 6= 0 . A complex linear equation of the form

az = b

in analogy with the corresponding real linear equation has exactly one solution

z =
b
a

.

With a and b in rectangular form, the solution is easily found in rectangular form, as
shown in the following example.

Example 1.54 Solution of a Linear Equation

The equation
(1− i) z = (5 + 2i)

has the solution

z =
5 + 2i
1− i

=
(5 + 2i)(1 + i)
(1− i)(1 + i)

=
3 + 7i

2
=

3
2
+

7
2

i .

Also in the solution of complex quadratic equations we use a formula that corresponds
to the well-known solution formula for real quadratic equations. This is given in the
following theorem that is proved in eNote 2 about polynomials.
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Theorem 1.55 Solution Formula for Complex Quadratic Equations

Let a, b and c be arbitrary complex numbers with a 6= 0 . We define the discriminant
by D = b2 − 4ac . The quadratic equation

az2 + bz + c = 0 (1-38)

has two solutions
z0 =

−b− w0

2a
and z1 =

−b + w0

2a
, (1-39)

where w0 is a solution to the binomial quadratic equation w2 = D .

If in particular D = 0 , we find z0 = z1 =
−b
2a

.

In this eNote we do not introduce square roots of complex numbers. Therefore
the complex solution formula above differs in one detail from the ordinary real
solution formula.

Concrete examples of the application of the theorem can be found in Section 30.5.2 in
eNote 2 about polynomials.

1.10 Complex Functions of a Real Variable

In this section we use the theory of the so-called epsilon functions for the introduction of dif-
ferentiability. The material is a bit more advanced than previously and knowledge about epsilon
functions from eNote 3 (see Section 3.4) may prove advantageous. Furthermore the reader should
be familiar with the rules of differentiation of ordinary real functions.

We will make a special note of functions of the type

f : t 7→ ect , t ∈ R , (1-40)

where c is a given complex number. This type of function has many uses in pure and
applied mathematics. A main purpose of this section is to give a closer description
of these. They are examples of the so-called complex functions of a real variable. Our
investigation starts off in a wider sense with this broader class of functions. I.a. we
show how concepts such as differentiability and derivatives can be introduced. Then
we give a fuller treatment of functions of the type in (1-40).
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Definition 1.56 Complex Functions of a Real Variable

By a complex function of a real variable we understand a function f that for every t ∈ R

attaches exactly one complex number that is denoted f (t) . A short way of writing a
function f of this type is

f : R 7→ C .

The notation f : R 7→ C tells us the function f uses a variable in the real num-
ber space, but ends up with a result in the complex number space. Consider
e.g. the function f (t) = eit . At the real number t = π

4 we get the complex
function value

f
(π

4

)
= e

π
4 i = cos

(π

4

)
+ i sin

(π

4

)
=

√
2

2
+

√
2

2
i .

Let us consider a function f : R 7→ C . We introduce two real functions g and h by

g(t) = Re
(

f (t)
)

and h(t) = Im
(

f (t)
)

for all t ∈ R . By this f can be stated in rectangular form:

f (t) = g(t) + i · h(t) , t ∈ R . (1-41)

When in the following we introduce differentiability of complex functions of one real
variable, we shall need a special kind of complex function, viz. the so-called epsilon
functions. Similar to real epsilon functions they are auxiliary functions, whose functional
expression is of no interest. The two decisive properties for a real epsilon function ε :
R 7→ R are that it satisfies ε(0) = 0 , and that ε(t) → 0 when t → 0 . The complex
epsilon function is introduced in a similar way.

Definition 1.57 Epsilon Function

By a complex epsilon function of a real variable we understand a function ε : R 7→ C,
that satisfies:

1. ε(0) = 0, and

2. |ε(t)| → 0 for t→ 0 .
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Note that if ε is an epsilon function, then it follows directly from the Definition
1.57 that for every t0 ∈ R:

| ε(t− t0) | → 0 for t→ t0 .

In the following example a pair of complex epsilon functions of a real variable are
shown.

Example 1.58 Epsilon Functions

The function
t 7→ i sin(t) , t ∈ R

is an epsilon function. This is true because requirement 1 in definition 1.57 is fulfilled by

i sin(0) = i · 0 = 0

and requirement 2 by

|i sin(t)| = |i| |sin(t)| = |sin(t)| → 0 for t→ 0 .

Also the function
t 7→ t + it , t ∈ R

is an epsilon function, since
0 + i · 0 = 0

and
|t + it| =

√
t2 + t2 =

√
2 |t| → 0 for t→ 0 .

We are now ready to introduce the concept of differentiability for complex functions of a
real variable.
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Definition 1.59 Derivative of a C-valued Function of a Real Variable

A function f : R 7→ C is called differentiable at t0 ∈ R, if a constant c ∈ C and an
epsilon function ε : R 7→ C exist such that

f (t) = f (t0) + c(t− t0) + ε(t− t0)(t− t0) , t ∈ R . (1-42)

If f is differentiable at t0 then c is called the derivative for f at t0 .

If f is differentiable at every t0 in an open interval I then f is said to be differentiable
on I .

Differentiability for a complex function of a real variable is tightly connected to the
differentiability of the two real parts of the rectangular form. We now show this.

Theorem 1.60

For a function f : R 7→ C with the rectangular form f (t) = g(t) + ih(t) and a
complex number c with the rectangular form c = a + ib :

f is differentiable at t0 ∈ R with

f ′(t0) = c ,

if and only if g and h are differentiable at t0 with

g′(t0) = a and h′(t0) = b .
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Proof

First suppose that f is differentiable at t0 and f ′(t0) = a + ib, where a, b ∈ R . Then there
exists an epsilon function ε such that f for every t can be written in the form

f (t) = f (t0) + (a + ib)(t− t0) + ε(t− t0)(t− t0) .

We rewrite both the left- and the right-hand side into their rectangular form:

g(t) + ih(t) =

g(t0) + ih(t0) + a(t− t0) + ib(t− t0) + Re(ε(t− t0)(t− t0)) + iIm(ε(t− t0)(t− t0)) =

(g(t0) + a(t− t0) + Re(ε(t− t0))(t− t0)) + i(h(t0) + b(t− t0) + Im(ε(t− t0))(t− t0)) .

From this we get

g(t) = g(t0)+ a(t− t0)+Re(ε(t− t0))(t− t0) and h(t) = h(t0)+ b(t− t0)+ Im(ε(t− t0))(t− t0) .

In order to conclude that g and h are differentiable at t0 with g′(t0) = a and h′(t0) = b , it
only remains for us to show that Re(ε) and Im(ε) are real epsilon functions. This follows
from

1. ε(0) = Re(ε(0)) + iIm(ε(0)) = 0 yields Re(ε(0)) = 0 and Im(ε(0)) = 0 , and

2. |ε(t)| =
√
|Re(ε(t))|2 + |Im(ε(t))|2 → 0 for t → 0 yields that Re(ε(t)) → 0 for t →

0 and Im(ε(t))→ 0 for t→ 0 .

The converse statement in the theorem is similarly proved.

�

Example 1.61 Derivative of a Complex Function

By the expression
f (t) = t + it2

a function f : R 7→ C is defined. Since the real part of f has the derivative 1 and the
imaginary part of f the derivative 2t we obtain from Theorem 1.60:

f ′(t) = 1 + i2t , t ∈ R .
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Example 1.62 Derivative of a Complex-valued Function

Consider the function f : R 7→ C given by

f (t) = eit = cos(t) + i sin(t) , t ∈ R .

Since cos′(t) = − sin(t) and sin′(t) = cos(t) , it is seen from Theorem 1.60 that

f ′(t) = − sin(t) + i cos(t) , t ∈ R .

In the following theorem we consider the so-called linear properties of differentiation.
These are well known from real functions.

Theorem 1.63 Computational Rules for Derivatives

Let f1 and f2 be differentiable complex functions of a real variable, and let c be an
arbitrary complex number. Then:

1. The function f1 + f2 is differentiable with the derivative

( f1 + f2)
′(t) = f1

′(t) + f2
′(t) . (1-43)

2. The function c · f1 is differentiable with the derivative

(c · f1)
′(t) = c · f1

′(t) . (1-44)

Proof

Let f1(t) = g1(t)+ i h1(t) and f2(t) = g2(t)+ i h2(t), where g1, h1, g2 and h2 are differentiable
real functions. Furthermore let c = a + ib be an arbitrary complex number in rectangular
form.

First part of the theorem:

( f1 + f2)(t) = f1(t) + f2(t) = g1(t) + i h1(t) + g2(t) + i h2(t)

= (g1(t) + g2(t)) + i (h1(t) + h2(t)) .
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We then get from Theorem 1.60 and by the use of computational rules for derivatives for real
functions:

( f1 + f2)
′(t) = (g1 + g2)

′(t) + i (h1 + h2)
′ (t)

=
(

g′1(t) + g′2(t)
)
+ i
(
h′1(t) + h′2(t)

)
=
(

g′1(t) + i h′1(t)
)
+ g′2(t) + i h′2(t)

= f ′1(t) + f ′2(t) .

By this the first part of the theorem is proved.

Second part of the theorem:

c · f1(t) = (a + ib) · (g1(t) + i h1(t))

= (a g1(t)− b h1(t)) + i (a h1(t) + b g1(t)) .

We get from Theorem 1.60 and by the use of computational rules for derivatives for real
functions:

(c · f1)
′(t) = (a g1 − b h1)

′ (t) + i (a h1 + b g1)
′ (t)

=
(
a g′1(t)− b h′1(t)

)
+ i
(
a h′1(t) + b g′1(t)

)
= (a + ib)

(
g′1(t) + i h′1(t)

)
= c · f ′1(t) .

By this the second part of the theorem is proved.

�

Exercise 1.64

Show that if f1 and f2 are differentiable complex functions of a real variable, then the function
f1 − f2 is differentiable with the derivative

( f1 − f2)
′(t) = f ′1(t)− f ′2(t) . (1-45)

We now return to functions of the type (1-40). First we give a useful theorem about their
conjugation.
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Theorem 1.65

For an arbitrary complex number c and every real number t:

ect = ec t . (1-46)

Proof

Let c = a + ib be the rectangular form of c . We then get by the use of Definition 1.41 and the
rules of computation for conjugation in Theorem 1.23:

ect = eat+ibt

= eat (cos(bt) + i sin(bt))

= eat (cos(bt) + i sin(bt))

= eat (cos(bt)− i sin(bt))

= eat (cos(−bt) + i sin(−bt))

= eat−ibt

= ect .

Thus the theorem is proved.

�

For ordinary real exponential functions of the type

f : x 7→ ekx , x ∈ R ,

where k is a real constant we have the well-known derivative

f ′(x) = k f (x) = kekx . (1-47)

We end this eNote by showing that the complex exponential function of a real variable
satisfies a quite similar rule of differentiation.



eNote 1 1.10 COMPLEX FUNCTIONS OF A REAL VARIABLE 48

Theorem 1.66 Differentiation of ect

Consider an arbitrary number c ∈ C . The function f : R 7→ C given by

f (t) = ect , t ∈ R (1-48)

is differentiable and its derivative is determined by

f ′(t) = c f (t) = cect . (1-49)

Proof

Let the rectangular form of c be c = a + ib . We then get

ect = eat+ibt

= eat (cos(bt) + i sin(bt))

= eat cos(bt) + i
(
eat sin(bt)

)
.

Thus we have

f (t) = g(t) + ih(t) , where g(t) = eat cos(bt) and h(t) = eat sin(bt) .

Since g and h are differentiable, f is also differentiable . Furthermore since

g′(t) = aeat cos(bt)− eatb sin(bt) and h′(t) = aeat sin(bt) + eatb cos(bt) ,

we now get

f ′(t) = aeat cos(bt)− eatb sin(bt) + i
(
aeat sin(bt) + eatb cos(bt)

)
= (a + ib)eat (cos(bt) + i sin(bt))

= (a + ib)eat+ibt

= c ect .

Thus the theorem is proved.

�

If c in Theorem 1.66 is real, (1-49) naturally only expresses the ordinary differentiation
of the real exponential function as in (1-47), as expected.
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