\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Flux through Parametric Surfaces. By Hand

We are given the vector field

$$\mV(x,y,z)=(\cos(x),\cos(x)+\cos(z),0)$$

together with a surface $\mathcal F$ that is given by the parametric representation

$$\mr(u,v)=(u,0,v), \quad u\in\left[ 0,\pi\right] ,\, v\in\left[ 0,2\right] .$$
A

Determine the normal vector $\,\mathbf N_{\mathcal F}\,$ corresponding to the given parametric representation, and compute the flux of the vector field through the surface.

B

What is the meaning of the sign of the flux? Try changing the sign of the flux by changing the parametric representation of the surface.

We are given the vector field

$$\mV(x,y,z)=(yz,-xz,x^2+y^2)$$

together with a surface$\,\mathcal F\,$ that is given by the parametric representation

$$\mr(u,v)=(u\sin(v),-u\cos( v),uv), \quad u\in\left[ 0,1\right] ,\, v\in\left[ 0,1\right] .$$
C

Determine the normal vector $\,\mathbf N_{\mathcal F}\,$ corresponding to the given parametric representation and compute the flux of the vector field through the surface.

Exercise 2: Volume Expansion Rate and Flux. Maple

Consider in $\,(x,y,z)$ space the vector field

$$\mV(x,y,z)=\left(\frac x2\,, \frac y2\,,2z\,\right)\,.$$
A

Determine the flow curve $\,\mr(t)\,$ of $\,\mV\,$ that fulfills the initial condition $\,\mr(0)=(1,1,1)\,$.

A surface $\,\mathcal S_0\,$ consists of the part of a unit sphere centred at the origin that is located on or above the plane given by the equation $\,\displaystyle{z=\frac 12\,.}$

B

Provide a parametric representation of $\,\mathcal S_0\,.$

C

Compute the flux of $\,\mV\,$ through $\,\mathcal S_0\,.$

D

$\,\mathcal S_0\,$ deforms over time by flowing with (the flow curves of) $\,\mV\,$. After a time $t$ we will denote the new, deformed surface $\,\mathcal S_t\,$. Provide a parametric representation of $\,\mathcal S_t\,$ after time $t$. Plot $\,\mathcal S_0\,$ and $\,\mathcal S_t\,$ for selected values of $\,t\,$.

E

Justify that $\,\mathcal S_0\,$ has no points in common with $\,\mathcal S_t\,$ for $\,t>0\,.$

F

Determine a parametric representation of the spatial region $\,\Omega_t\,$ that $\,\mathcal S_t\,$ has swept through after time $t$ since it left $\,\mathcal S_0\,$ at time $\,t=0\,.$

G

Compute the volume $\mathrm{Vol}(t)\,$ of $\,\Omega_t\,.$

H

Determine $\mathrm{Vol}’(t)\,$ and then $\mathrm{Vol}’(0)\,.$ Compare this result with the flux of $\,\mV\,$ through $\,\mathcal S_0\,$. Why do we see this link?

Exercise 3: Optimization of Flux. Maple

The vector field

$$\mV(x,y,z)=\left(xyz\,,x+y+z\,,\frac{z}2\,\right)$$

is given together with a plane $\,\alpha\,$ with the equation $\,z+x=2\,.$

A

Provide a parametric representation of the part of $\,\alpha\,$ that is located (vertically) above the square spanned by the points $\,(1,1,0),(-1,1,0),(-1,-1,0)\,$ and $\,(1,-1,0)\,$. The parametric representation should be chosen so that its corresponding normal vector has a positive $\,z$ coordinate.

B

Compute the flux through the parametrized part of $\,\alpha\,.$

An open surface $\mathcal F$ consists of two parts:

  • $\mathcal F_1$ is the part of $\alpha$ that is located (vertically) above the circular disc $x^2+y^2\leq 1\,$ in the $(x,y)$ plane.
  • $\mathcal F_2$ is the (vertical) cylindrical surface bounded from below by the unit circle $x^2+y^2=1$ in the $(x,y)$ plane and from above by $\alpha\,.$

Cyl2.png

C

Provide a parametric representation of $\,\mathcal F\,$ with the requirements that the normal vector corresponding to $\,\mathcal F_1\,$ has a positive $z$ coordinate and that the normal vector corresponding to $\,\mathcal F_2\,$ points away from the $\,z$ axis.

D

Compute the flux of $\,\mV\,$ through $\,\mathcal F\,$.

$\mathcal F\,$ is now being rotated by the angle $\,w\,$ about the $\,z\,$ axis counterclockwise as seen from the positive end of the $\,z$ axis.

E

Compute the value of $\,w\,$ that yields the maximum flux through the surface, and the value that yields the minimum flux. State those maximum and minimum values.

Exercise 4: Flux Using Gauss’ Divergence Theorem. By Hand

A 3D region in the form of a cube is given by the parametric representation

$$\Omega=\left\{\,(x,y,z)\,|\,\,x \in\left[ 0,1\right],\,y\in \left[ 0,1\right],\,z\in \left[ 0,1\right]\,\right\}$$

that is equipped with an outward-pointing unit normal vector field.

A

Compute the flux of the vector field

$$\mV(x,y,z)=(2x-\sqrt{1+z^2}\,,\,x^2y\,,\,-xz^2)$$

out through the surface $\partial\Omega$ of $\Omega\,.$

B

Compute the flux of the vector field

$$\mW(x,y,z)=\left(2x-\sqrt[3]{y^2+z^2}\,,\,xz-\cos(y)\,,\,\sin(xy)+2z\right)$$

out through the surface $\partial\Omega$ of $\Omega\,.$

C

Given that

$$\displaystyle{\int_0^1\int_0^1\int_0^1(x+y+z)\,\mathrm dx\,\mathrm dy\,\mathrm dz=\frac 32}\,,$$

determine a vector field whose flux out through the surface $\partial\Omega$ of $\,\Omega$ is $\frac 32\,.$

Exercise 5: Verification of Gauss’ Theorem

In this exercise we will verify Gauss’ Theorem in an example with a flux that is computed via the usual formula versus the same flux computed via a triple integral of a divergence.

We are given the vector field

$$\mV(x,y,z)=(-8x,8,4z^3)$$

and the spatial 3D region

$$\Omega=\lbrace (x,y,z)\,\vert\, x^2+y^2+z^2\leq a^2\,\, \mathrm{and}\,\, z\geq 0\rbrace\,,\,a>0\,,$$

whose surface $\,\partial \Omega\,$ has an orientation with an outwards-pointing unit normal vector field, $\,\mathbf n_{\partial \Omega}\,.$

A

Compute the volume integral

$$\int_{\Omega}\mathrm{Div(\mV)}\,\mathrm d\mu\,.$$

B

Compute the orthogonal surface integral (the flux)

$$\int_{\partial\,\Omega}\,\mV \mathbf{\cdot}\mathbf n_{\,\partial \Omega}\,\mathrm d\mu\,.$$

C

For which $\,a\,$ is $\mathrm{Flux}(\mV,\partial\,\Omega)$, with the given unit normal vector field $\,\mathbf n_{\,\partial \Omega}\,,$ positive?

D

Discuss with a fellow student which characteristic equality there is between Gauss’ Theorem about the relation between the divergence integral and the flux on one hand and the following identity known from highschool on the other hand:

$$\left[ F(x)\right] _a^b=\int_a^b F'(x)dx\,.$$

Exercise 6: The Coulomb Vector Field

Coulomb (1736-1806) worked with electromagnetism. From his work we have the so-called Coulomb vector field:

$$\mV(x,y,z)= \left(\frac{x}{\left(x^2+y^2+z^2\right)^{\frac32}}\,,\,\frac{y}{\left(x^2+y^2+z^2\right)^{\frac32}}\,,\,\frac{z}{\left(x^2+y^2+z^2\right)^{\frac32}}\right)\,.$$

A solid cylinder of revolution $\Omega$ is given by the parametric representation

$$\mr(u,v,w)=\left(u\cos(w)\,,\,u\sin(w)\,,\,v\right)\,,\,\,u\in\left[0,a\right] \,,\,\,v\in[-h,h]\,,\,\,w\in \left[-\pi\,,\,\pi\right]\,,$$

where $\,a\,$ and $\,h\,$ are positive real numbers. In the following we shall compute the flux out of the surface of $\,\Omega\,$ in two different ways.

A

Draw a sketch of $\,\Omega\,$ using paper and pencil and provide a parametric representation of each of the three parts that the surface $\,\partial\Omega\,$ of $\,\Omega\,$ consists of: The bottom, the top and the tubular-shaped part.

B

Determine the flux of $\,\mV\,$ out through $\,\partial\Omega\,$ by computing the flux out of each of the three parts that $\,\partial\Omega\,$ consists of. How does the size of the cylinder influence the strength of the flux?

C

Compute the flux of $\,\mV\,$ out through $\,\partial\Omega\,$ using Gauss’ Divergence Theorem.

D

Maybe (hopefully) you are now thinking that something is terribly wrong! Discuss with a fellow student what the problem is.