\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Flux through an Open vs. Closed Surface

A function $\,h:\reel^2 \rightarrow \reel\,$ is given by the expression

$$\,h(x,y)=1-x^3\,.$$

We consider a rectangle in the $(x,y)$ plane that is determined by $\,0\leq x\leq 1\,$ and $\,-\frac{\pi}2\leq y\leq \frac{\pi}2\,.$ Let the surface $\,\mathcal F\,$ be the part of the graph of $\,h\,$ that is located vertically above the rectangle.

x3graf.png

A

Provide a parametric representation of $\mathcal F\,.$

A vector field $\,\mV\,$ is given by

$$\,\displaystyle{\mV(x,y,z)=\begin{matr}{c}xz\newline x\cos(y)\newline 3x^2\end{matr}\,.}$$
B

Compute the flux of $\mV$ through $\mathcal F\,.$

Now let $\Omega$ denote a solid spatial region located vertically between the rectangle in the $(x,y)$ plane and $\mathcal F\,.$

C

Determine a parametric representation of $\Omega\,.$

D

Use Gauss’ Theorem to determine the flux of $\mV$ out through the surface of $\Omega\,.$

Exercise 2: 12 Fluxes of Fields with Constant Divergence

A spatial region $\Omega_1$ is a solid unit sphere centred at the origin, and another spatial region $\Omega_2$ is given by the parametric representation

$$\mr(u,v,w)=(u\cos(v),u\sin(v),u^2+w(1-u^2)\,)\,,$$
$$u\in \left[0,1\right]\,,v\in \left[-\pi,\pi\right]\,,w\in \left[0,1\right].$$

Their surfaces $\partial \Omega_1$ and $\partial \Omega_2$ are oriented with outwards-pointing unit normal vectors. In addition we are given the following six vector fields:

$$\begin{align*} \mV_1(x,y,z)&=(1,2,3)\newline \mV_2(x,y,z)&=\left(-x,\frac y2,-\frac z3\right)\newline \mV_3(x,y,z)&=(x-yz,-2y+xz^2,3z+yx^3)\newline \mV_4(x,y,z)&=(k_1,k_2,k_3)\newline \mV_5(x,y,z)&=(y-x^3,3x^2y,25+10z)\newline \mV_6(x,y,z)&=(2xz-2xy-z,z^3+y^2,-z^2) \end{align*}$$
A

Compute the 12 fluxes

$$\mathrm{Flux}(\mV_i,\,\partial\Omega_j)\,,\,i=1..6\,,\,j=1..2\,.$$

Exercise 3: Gauss’ Theorem and Divergence

A parametrized spatial region $\Omega_{\mathbf r}$ in $(x,y,z)$ space has the parametric representation

$$\mr(u,v,w)=(u\cos(v),u\sin(v),w)\,,\,\,u\in\left[0,2\right]\,,\,\,v\in\left[0,\frac{\pi}{2}\right]\,,\,\,w\in\left[0,5\right]\,.$$
A

$\Omega_{\mathbf r}$ is a parametrization of a simple geometric object. Describe which, and find its volume by elementary geometric means.

We are about the vector fields $\mU$ and $\mV$ informed that:

$$\mathrm{Div}(\mU)(x,y,z)=\pi\,\,\,\,\mathrm{and}\,\,\,\,\mathrm{Div}(\mV)(x,y,z)=yz\,.$$
B

Determine the fluxes

$$\,\displaystyle{\int_{\partial \Omega_{\mathbf r}}\mU\cdot \mathbf n_{\partial \Omega_{\mathbf r}}\,\mathrm du}\,\,\,\,\textrm{and}\,\,\,\, \,\displaystyle{\int_{\partial\Omega_{\mathbf r}}\mV\cdot \mathbf n_{\partial \Omega_{\mathbf r}}\,\mathrm du}\,.$$

Exercise 4: Gauss’ Theorem Applied on an Open Surface!

We are given the vector field

$$\mV(x,y,z)=(\e^y+\cos(yz),\e^z+\sin (xz),x^2z^2),\, (x,y,z)\in\reel^3$$

together with a hemi-spherical surface $F$ given by

$$x^2+y^2+z^2-4z=0\,\,\mathrm{and}\,\,z\leq 2\,.$$
A

Draw a sketch of $F$ using pen and paper.

$F$ is thought to be oriented with a unit normal vector field with negative $z$ coordinate. We wish to determine the flux though $F,$ but it turns out to be rather difficult to integrate over the surface $F\,$ since the vector field is a bit complicated. On the other hand it is not difficult to compute $\mathrm{Div}(\mV)(x,y,z)\,.$ So let us tune the problem to be solvable via Gauss’ Theorem. We will start by integrating the divergence of $\mV$ through the solid hemisphere $\Omega$ that fills $F$.

B

Compute the flux of $\mV$ out through the surface $\partial \Omega$ of $\Omega$ by computing

$$\int_{\Omega}\mathrm{Div} (\mV)\, \mathrm d\mu\,.$$

We have now computed the flux through a closed surface. But the hemi-spherical surface $F$ is open at the top! We have thus included the flux through the top even though it shouldn’t have been included - let’s find it and subtract it away.

C

Find a parametric representation of the circular disc that can cover the top of the hemisphere.

D

Compute the flux through the circular disc.

E

Now state the flux through $F$.

Exercise 5: Extra Exercise 1

We are given the vector field

$$\mV(x,y,z)=(x^3+xy^2,4yz^2-2x^2y,-z^3)$$

and the solid region

$$\Omega=\left\{ (x,y,z)\,|\, x^2+y^2+z^2\leq a^2\right\}\,.$$
A

Compute the flux of $\mV$ out through the surface $\partial \Omega$ of $\Omega\,.$

Exercise 6: Extra Exercise 2

We are given the vector field $\mV(x,y,z)=(2x,3y,-z)$ and the solid region

$$\Omega=\left\{ (x,y,z)\,|\,\left( \frac{x}{a}\right) ^2+\left( \frac{y}{b}\right) ^2+\left( \frac{z}{c}\right) ^2\leq 1\right\}\,.$$
A

Determine the flux of $\mV$ out through the surface $\partial \Omega$ of $\Omega\,.$