\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: A Flow Curve in the Plane

A linear vector field $\mathbf U$ in the $(x,y)$ plane is given by

$$\mathbf U(x,y)=\left(\frac 18\,x +\frac 38\,y\,,\,\frac 38\,x +\frac 18\,y\,\right).$$
A

Determine the system matrix that corresponds to $\mathbf U$ and find (readily using Maple’s Eigenvectors command) the eigenvalues of the matrix and the corresponding eigenvectors.

B

The flow curve $\,\mr_1(u)\,$ is determined by passing through the point $\,(0,-1)\,$ at time $\,u=0\,,$ and the flow curve $\,\mr_2(u)\,$ by passing through $\,(0,\frac 12)\,$ at time $\,u=0\,$. State using these initial conditions and the result from question a) a parametric representation of $\,\mr_1(u)\,$ and $\,\mr_2(u)\,.$

C

Make a Maple illustration that shows both the vector field and the two flow curves.

Exercise 2: Flow Curves in 3D Space

We are in $\,(x,y,z)$ space given the vector field

$$\mathbf V(x,y,z)=\left(z\,,\,\frac 1{10}\,y\,,-x\right)\,.$$
A

Compute the eigenvalues of the system matrix that corresponds to $\,\mathbf V\,$.

B

Determine the flow curve $\,\mr(u)\,$ of $\,\mathbf V\,$ that corresponds to the initial condition $\,\mr(0)=(1,1,1)\,$ (if you feel comfortable about the solution formulas for differential equation systems, then use Maple’s dsolve command to solve this).

C

Create a Maple illustration where $\,\mathbf V\,$ is plotted together with $\,\mr(u)\,$ for $\,u\in [\,0,5\,\pi\,]\,.$

Consider the line segment $\,\mathcal L\,$ extending from the point $\,(1,1,1)\,$ to the point $\,(2,2,2)\,.$

D

Provide a parametric representation of $\,\mathcal L\,.$

E

Determine (readily using dsolve) the flow curve $\,\mathbf s(u)\,$ of $\,\mathbf V\,$ corresponding to the initial condition that $\,\mathbf s(0)\,$ is an arbitrary point on $\,\mathcal L\,$.

F

Provide a parametric representation $\mathbf k(u,v)$ of the surface $\,\mathcal F\,$ that $\,\mathcal L\,$ sweeps through when we imagine that $\,\mathcal L\,$ flows with the vector field through the time $\,u\in [\,0,5\,\pi\,]\,.$ Plot $\,\mathcal F\,$ together with the vector field.

Exercise 3: Gradient Vector field in 3D Space

A function $f$ is given by

$$f(x,y,z)=(x-1)^2+2\,(y-1)^2+(z-1)^2-4\,.$$
A

Compute by hand (or in your head) the gradient of $\,f\,.$

B

Find a parametric representation of the level surface $\,\mathcal K_0\,$ that corresponds to $\,f(x,y,z)=0\,.$

C

The gradient of $\,f\,$ can be interpreted as a gradient vector field in $(x,y,z) $space. Create a Maple illustration that contains both a plot of the level surface $\,\mathcal K_0\,$ and a plot of the gradient vector field.

D

Show that the gradient of $\,f\,$ at every point $\,P\,$ on $\,\mathcal K_0\,$ is perpendicular to $\,\mathcal K_0\,$ at $\,P\,$ (or more precisely, perpendicular to the tangent plane to $\,\mathcal K_0\,$ at $\,P\,).$

E

Discuss with a student what the meaning is of the well-known slogan: “The gradient points in the direction along which the function increases the most” in this context.

Exercise 4: Pondering about Gradients

Two vector fields in 3D space are given by:

$$\begin{align*} \mathbf U(x,y,z)&=(xy\cos(z)\,,y^2+xz\,,3z)\,\newline \mathbf V(x,y,z)&=(2x\mathrm{e}^{x^2},2\cos(y^2)\,y\,,3)\,. \end{align*}$$
A

One of these vector fields is a gradient vector field, the other is not. Show that this statement is correct.

Exercise 5: Tangential Line Integrals. By Hand

In the $(x,y)$ plane we are given a vector field

$$\mV(x,y)=(x^2-2xy\,,\,y^2-2xy)$$

and a curve $\,\mathcal K\,$ by the equation

$$y=x^2, \quad x\in\left[ -1,1\right]\,.$$
A

Compute the tangential line integral

$$\int_{\mathcal K}\mV\cdot\me\, \mathrm d\mu.$$

In $\,(x,y,z)$ space we are given a vector field

$$\mU(x,y,z)=(\,y^2-z^2\,,\,2yz\,,-x^2)$$

and a curve $\,\mathcal G\,$ with the parametric representation

$$\mathbf s(u)=(u,u^2,u^3)\,, \quad u\in\left[ -1,1\right]\, .$$
B

Compute the tangential line integral

$$\int_{\mathcal G}\mU\cdot\me\, \mathrm d\mu.$$

Exercise 6: Integration along a Stair Line

In the plane we consider an arbitrary point $\,P=(x,y)\,$ and the vector field

$$\,\mV(x,y)=(xy,x)\,.$$
A

Compute the tangential line integral of $\,\mV\,$ along the straight line from the origin to $\,P\,.$

By the stair line from the origin to point $\,P\,$ we understand the piece-wise straight lines that run from the origin to point $\,(x,0)\,$ and then from $\,(x,0)\,$ to $\,(x,y)\,.$

B

On a piece of paper with an $\,(x,y)$ coordinate system sketch a stair line to a few chosen points.

C

Compute the tangential line integral of $\,\mV\,$ along a stair line from the origin to the arbitrary point $\,P\,.$

D

Decide based on your answers to questions a) and c) above whether $\,\mV\,$ is a gradient vector field.

Exercise 7: Scalar potentials

A vector field $\mathbf V$ is a gradient vector field if a function $f$ exists so that $\nabla f=\mathbf V$. If so, then $f$ is called an antiderivative or a scalar potential of the vector field. A vector field is a gradient vector field if and only if it has a scalar potential.

We consider in 3D space an arbitrary point $\,P=(x,y,z)\,$ and the vector field

$$\,\mV(x,y,z)=(y\cos (xy),z+x\cos (xy),y)\,.$$
A

Determine the tangential line integral of $\,\mV\,$ along a stair line from the origin to $\,P\,.$

B

Investigate whether $\,\mV\,$ is a gradient vector field. If so, then state a scalar potential and state the indefinite integral.

We are now given the vector field

$$\mU(x,y,z)=\frac{(y,x,2z)}{1+x^2y^2+2xyz^2+z^4}\,.$$
C

Investigate whether $\,\mU\,$ is a gradient vector field and if so, then state a scalar potential for it.