\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Plane Integrals over Axis-Parallel Rectangles.

By hand.

A

Compute the plane integral

$$\int_B (x^2y^2+x) \; \mathrm d\mu \quad\mathrm{where}\quad B=\left\lbrace (x,y)\,\vert\, 0\leq x\leq 2\,, -1\leq y\leq 0\right\rbrace\, .$$

B

Compute the plane integral

$$\int_B \left(\frac{y}{1+xy}\right) \;\mathrm d\mu \quad\mathrm{where}\quad B=\left\lbrace (x,y)\,\vert\, 0\leq x\leq 1\,, 0\leq y\leq 1\right\rbrace\, \, .$$

Exercise 2: Parametrization and the Plane Integral. By Hand

In the $(x,y)$ plane the point $\displaystyle{P_0=\left(2\,,1\right)\,}$ is given along with the set of points

$$B=\left\lbrace (x,y)\,\Big\vert\, \frac 32\leq x\leq \frac 52 \,\,\,\mathrm{and}\,\,\, 0\leq y\leq \frac 12\, x^2\right\rbrace .$$
A

Make a preliminary sketch of $B\,$ and state a parametric representation $\mr(u,v)$ of $B\,$ with suitable intervals for $u$ and $v\,.$ Determine two numbers $u_0$ and $v_0$ such that $\mr(u_0,v_0)=P_0\,.$

B

Make an illustration of $B$ using Maple where you from $P_0$ draw the tangent vectors $\mr’_u(u_0,v_0)$ and $\mr’_v(u_0,v_0)\,.$ Determine the area of the parallelogram spanned by the tangent vectors.

C

Determine the Jacobian function corresponding to $\mr(u,v)$, and compute the plane integral

$$\displaystyle{\int_B\, \frac{1}{x^2+y} \,\mathrm d\mu}\,.$$

Exercise 3: Polar Coordinates. By Hand

A function $\,f:\reel^2\rightarrow \reel\,$ is given by

$$\,\displaystyle{f(x,y)=x^2-y^2}\,.$$

For a given point in the $\,(x,y)$ plane $\,\varrho\,$ denotes the point’s absolute value (the distance from the point to the origin). Similarly, $\,\varphi\,$ denotes the argument of the point (the angle between the $x$ axis and the position vector of the point given a positive sign when turned counter-clockwise). A set of points $B$ is in polar coordinates described by

$$B=\left\{(x,y)\,|\,0\leq \varrho \leq a\,\,\,\,\mathrm{and}\,\,\,-\frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}\right\}$$

where $\,a\,$ is an arbitrary positive real number.

A

Make an example sketch of $\,B\,.$

B

Compute the area of $\,B\,$ via elementary geometric area formulas and considerations. Then compute the area via integration.

C

Determine the plane integral $\displaystyle{\int_B f(x,y) \;\mathrm d\mu}\,.$

Exercise 4: Parametric Surfaces

A surface $\,F_{\mr}\,$ is given by the parametric representation

$$\mr(u,v)=(u\cos (v),u\sin (v),v)\,,\,\, u\in\left[ 0,2\right] ,\,v\in\left[ 0;2\pi\right]\, .$$
A

A point on the surface is given by $\,P_0=(0,1,\frac{\pi}{2})\,.$ Determine two numbers $\,u_0\,$ and $\,v_0\,$ such that $\,\mr(u_0,v_0)=P_0\,.$

B

The tangent vectors $\,\mr’_u(u_0,v_0)\,$ and $\,\mr’_v(u_0,v_0)\,$ drawn from $\,P_0\,$ span a parallelogram $\,\mathcal P\,.$ State a parametric representation of $\,\mathcal P\,.$

C

Make a Maple illustration that contains all of the following:

  • $F_{\mr}\,$
  • $\mr’_u(u_0,v_0)\,$ and $\,\mr’_v(u_0,v_0)\,$
  • The normal vector $\,\mathbf n(u_0,v_0)=\mr’_u(u_0,v_0)\times \mr’_v(u_0,v_0)\,$
  • $\,\mathcal P$

D

Compute the area of $\,\mathcal P\,.$

E

Clarify to a fellow student how the formulas for the Jacobians are different for plane integrals and for surface integrals.

F

Compute the Jacobian function corresponding to $\mr(u,v)$, and compute the area of $F_{\mr}\,.$

Exercise 5: Cylindrical Surfaces

A cylindrical surface is a surface that is vertically perpendicular to a so-called directrix in the $(x,y)$ plane. Despite the name, a cylindrical surface does not have to have the form of a cylinder. For the cylindrical surface to be well-defined, a $z$-interval must be given for all points $(x,y)$ on the directrix.

A cylindrical surface $\mathcal C_1$ is given by the following information:

$$\mathrm{Directrix}=\lbrace (x,y)\,\vert\, (x-1)^2+y^2=1\rbrace\quad \mathrm{and}\quad z\in\left[\, 0,1\,\right]\, .$$

cyl_1.png

A

State a parametric representation of $\mathcal C_1\,.$

B

Compute

$$\int_{\mathcal C_1}(x+yz)\,\mathrm d\mu.$$

Another cylindrical surface $\mathcal C_2$ is given by

$$\mathrm{Directrix}=\lbrace (x,y)\,\vert\, x\geq 0 \,\,\,\mathrm{and}\,\,\,y\geq 0\,\,\,\mathrm{and}\,\,\,x^2+y^2=1\rbrace\quad\mathrm{and}\quad z\in\left[\, 0\,,\frac 12+ x^2\,\right]\, .$$

cyl_2.png

C

Determine a parametric representation of $\mathcal C_2\,,$ state its corresponding Jacobian function, and compute the area of $\mathcal C_2\,.$

Exercise 6: Mass Distributions in the $(x,y)$ Plane

Consider the set of points

$$\,B=\left\lbrace (x,y)\,\vert\, 1\leq x\leq 2 \,\,\mathrm{and}\,\, 0\leq y\leq x^3\right\rbrace\,.$$

We are given a mass density distribution function:

$$f(x,y)=1\,.$$
A

Compute the mass of the set.

B

A physics question: Discuss with a fellow student what SI units $f$ and $M$ would have.

C

Determine the center of mass of the set.

D

Determine the mass and the center of mass when the mass density is $f(x,y)=x^2.$

We now consider the same set of points as in Exercise 3:

$$\displaystyle{B=\left\{(x,y)\,|\,0\leq \varrho \leq a\quad \mathrm{and}\quad -\frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}\right\}}\,.$$
E

Compute the mass and the center of mass assuming a constant mass density of $\,f(x,y)=1.\,$

F

Compute the mass and centre of mass again but with the varying mass density of $f(x,y)=x^2\,.$

Exercise 7: Supplementary Exercise: Reparametrization

A surface $F$ is given by the parametric representation

$$\mr(u,v)=(\sqrt u\cos v,\sqrt u\sin v, v^{3/2}), \quad u\in\left[ 1,2\right] ,\, v\in\left[ 0,u\right] \,.$$
A

State an alternative parametric representation so that the region of integration becomes rectangular.

B

Compute

$$\int_F(x^2+y^2)\,\mathrm d\mu.$$