\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Integration by Parts and Substitution with Two Variables

A

Compute

$$\displaystyle{\int_0^{\frac{\pi}{2}}\left(\int_0^{\frac{\pi}{2}} u\cos(u+v)\,\mathrm du\right)\,\mathrm dv\,.}$$

B

Compute

$$\displaystyle{\int_0^1\left(\int_0^1\, \frac{v}{(uv+1)^2}\,\mathrm du\right)\,\mathrm dv\,.}$$

Exercise 2: Plane Integral with Parametrization

We will compute the plane integral

$$\int_B \,2xy\,\mathrm d\mu\, \quad\mathrm{where}\quad B=\left\lbrace (x,y)\,\vert\, 0\leq x\,, 0\leq y\,, x+y\leq 1\right\rbrace\,.$$

Follow the steps below.

C

Firstly, sketch region $B.$

D

Secondly, create a parametric representation of $B\,$.

E

Thirdly, compute the Jacobian function that corresponds to your parametrization.

F

Fourthly, determine the restriction of the functino $f$ to the parametrization, $f(\mathbf r(u,v))$.

G

Fifth and finally, compute the given plane integral.

Exercise 3: Graph Surface, Parametrization and Integration

If a function of two variables defined over an axis-parallel rectangle is given as:

$$h(x,y)\,,\,\, x\in\left[ a,b\right] ,\,y\in\left[ c,d\right]\,,$$

then it is fairly easy to state a parametric representation of its graph:

$$\begin{matr}{c}x\newline y\newline z\end{matr}=\mr(u,v)=\begin{matr}{c}u\newline v\newline h(u,v)\end{matr} \,,\,\, u\in\left[ a,b\right] ,\,v\in\left[ c,d\right]\,.$$

Use this observation in the following question.

A

We are given the function $\,h(x,y)=\sqrt 3\,y\,$ and the set of points

$$\,M=\left\{(x,y)\,|\,x\in\left[ 0,1\right] ,\,y\in\left[ 0,2\right]\right\}\,.$$

Let $G$ denote the part of the graph of $h$ that is located vertically above $M\,.$

State a parametric representation of this elevated surface $G\,,$ and compute the surface integral

$$\int_G\,xyz\,\mathrm d\mu\,.$$

Exercise 4: Surface of Revolution

A parabola segment $K$ in the $(x,z)$ plane is given by the equation

$$z=\frac{x^2}4\,\,,\,\,x\in [\,0\,,\,2\,]\,.$$
A

Explain why $K$ when considered as a space curve can be described by the parametric representation

$$\mr(u)=(g(u),0,h(u))=\left(u,0,\frac{u^2}{4}\right), \quad\mathrm{where}\,u\in\left[\, 0,2\,\right] .$$

We will now consider $K$ to be a profile curve. A surface of revolution $F$ appears from rotating $K$ an angle of $2\pi$ about the $z$ axis.

B

Explain that $F$ can be described by the parametric representation

$$\begin{align*} \mr(u,v)&=\big(\,g(u)\cos(v),g(u)\sin(v),h(u)\,\big)\newline &=\big(\,u\cos(v),u\sin(v),\frac{u^2}{4}\,\big)\,,\,\,u\in[\,0,2\,]\,\,,v\in[\,0,2\pi\,]\,. \end{align*}$$

C

We now introduce the function $f(x,y,z)=x^2+y^2\,.$ Compute the surface integral

$$\int_F f\,\mathrm d\mu.$$

Exercise 5: Graph Surface

For a function of two variables

$$h(x,y)=2-x^2-y^2\,$$

we consider the following two graph surfaces:

$$\begin{align*} F&=\lbrace(x,y,z)\,\vert\,x\in \left[\,0\,,\,1\,\right]\,, y\in \left[\,0\,,\,2\,\right] \,\,\mathrm{and}\,\, z=h(x,y)\,\rbrace\,,\newline G&=\lbrace(x,y,z)\,\vert\, x^2+y^2\leq 2\,\,\mathrm{and}\,\, z=h(x,y)\,\rbrace\,. \end{align*}$$
A

Compute

$$\displaystyle{\int_F\sqrt{9-4z}\,\mathrm d\mu}\,.$$

B

Compute

$$\displaystyle{\int_G\sqrt{9-4z}\,\mathrm d\mu}\,.$$