\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Seven Antiderivatives You Must Know by Heart

A

For which of the following functions of $x$, that are given on appropriate domains, can you immediately state an antiderivative (an indefinite integral)?

$$\begin{align} 1. \qquad &x^n\,,\,\,n\in \mathbb N\\\\ 2. \qquad &\frac{1}{x}\\\\ 3. \qquad &\ln(x)\\\\ 4. \qquad &\frac{1}{1+x^2}\\\\ 5. \qquad &\cos(x)\\\\ 6. \qquad &\sin(x)\\\\ 7. \qquad &\mathrm e^x \end{align}$$

Exercise 2: Seven Integration Rules You Must Master

A

State an antiderivative of each of the following functions of $x$ defined on appropriate domains:

$$\begin{align} 1. \qquad &x^n\quad \text{where}\quad n \in \Bbb Z\\\\ 2. \qquad &x^k\quad \text{where}\quad k \in \Bbb Q\\\\ 3. \qquad &\frac{1}{a\cdot x+b} \quad\text{where}\quad a,b \in \reel, a\neq 0\\\\ 4. \qquad &\cos(a\cdot x+b) \quad\text{where}\quad a,b \in \reel, a\neq 0\\\\ 5. \qquad &\sin(a\cdot x+b) \quad\text{where}\quad a,b \in \reel, a\neq 0\\\\ 6. \qquad &\mathrm e^{a\cdot x+b} \quad\text{where}\quad a,b \in \reel, a\neq 0\\\\ 7. \qquad &\mathrm e^{a\cdot x+b} \quad\text{where}\quad a,b \in \Bbb C, a\neq 0 \end{align}$$

B

How would you most efficiently integrate (by hand) the following function of $x$:

$$\frac{1}{x^k}\,,$$

where $k>0, x\neq 0$?

When you solve the rest of today’s exercises, refer back to exercise 1 and 2 when needed for the integration rules. When the day is over, you will (must!) have these antiderivatives stored firmly in your memory, ready for retrieval at any moment.

Exercise 3: Computational Rules for Indefinite Integrals

A

Determine by hand the indefinite integral

$$\int \left( 5\cos(x+1)-\sin(5x)+\frac{2}{x-3}-7\right)\mathrm dx\,,\,\,x>3\,,$$

and explain the integration rules you have used.

Exercise 4: Sequences of Numbers

In this and the following exercise we will work on examples of some important building blocks within integral calculus: Sequences of numbers and their possible convergence.

From The Great Danish Encyclopedia, translated (Gyldendal):

convergence, concept of fundamental importance in mathematical analysis, in particular in the theory for infinite series. A sequence of real numbers $x_1,x_2,\ldots$ is called convergent, if a number $x$ exists, such that the number $x_n$ is arbitrarily close to $x$, when $n$ is sufficiently large (…). The number $x$ is called the limit value of the sequence, and the sequence is said to converge towards $x\,.$ If the sequence is not convergent, it is divergent.

A

Four sequences $\,\lbrace a_n\rbrace\,,$ $\,\lbrace b_n\rbrace\,,$ $\,\lbrace c_n\rbrace\,$ and $\,\lbrace d_n\rbrace\,$ are for $n\in \mathbb N$ given by

$$a_n=\frac 1n\,,\,\,b_n=\frac{n-1}{2n}\,,\,\,c_n=\frac{n}{1000}\,\,\,\mathrm{and}\,\,\,d_n=\frac{4n^2+16}{8-3n^2}\,.$$

Decide which of these four sequences that are convergent, and state the limit values for those that are convergent.

Exercise 5: Integrals Using Left Sums

In this exercise you will determine integration values using so-called left sums. The technique involves subdividing the area under the graph of the function into columns, and then summing up their areas as their number goes towards infinity.

For that, we state (without proof) the following formula for the sum of an arithmetic series, which might come in handy:

$$a_1+a_2+\cdots+a_n=\sum_{i=1}^n a_i=\frac n2(a_1+a_n)\,.$$
A

State a left sum $\,V_n\,$ for the function

$$\,f(x)=x\,,\,\,x\in \left[\,0\,,\,1\,\right]$$

corresponding to a subdivision of the interval $[0\,,\,1]$ in $\,n\,$ segments of equal size.

B

Based on the above, state the solution to

$$\int_0^1 x\,\mathrm{d}x.$$

C

Repeat the question with the function

$$\,f(x)=3x+1\,,\,\,x\in \left[\,0\,,\,1\,\right]\,.$$

Exercise 6: The Fundamental Theorem of Algebra. By Hand

A

Compute the integral

$$\int_0^1\,\frac{1}{1+u^2}\,\mathrm du\,.$$

B

Compute the double integrals

$$\int_1^2\,\Big (\int_0^1\,\frac{\e^{2u}}{v}\,\mathrm du\Big)\mathrm dv$$

and

$$\int_0^{\frac{\pi}{2}}\,\Big (\int_0^1\,v\cos(uv)\,\mathrm du\Big)\mathrm dv.$$

C

Compute the triple integral

$$\int_0^1\Big(\int_0^1\Big(\int_0^1 24\,x^3\,y^2\,z\,\mathrm dx\Big)\mathrm dy\Big)\mathrm dz\,.$$

Exercise 7: The Tangent Vector and the Length of a Curve

Consider in the $(x,y)$ plane the parametric curve

$$\mathbf r(u)=(2\,u^2,u^3)\,,\,\,u\in \left[\,0,2\,\right]\,.$$
A

Discuss with a fellow student what the difference is between a tangent and a tangent vector.

B

Determine the tangent vector of $\mathbf r(u)$ at the point $(2,1)\,$ as well as the length of this tangent vector.

C

Plot the curve with its tangent vector at $(2,1)$.

D

How long is the part of the curve that corresponds to $u\in \left[\,0,1\,\right]\,?$

How long is the part of the curve that corresponds to $u\in \left[\,1,2\,\right]\,?$

Exercise 8: Parametrization and Line Integral

By Hand.

In $(x,y,z)$ space we consider a circle $C$ given by

$$C=\left\{(x,y,z)\in \reel^3\,|\,\,x^2+(y-1)^2=4\,\,\,\,\mathrm{and}\,\,\,z=1\right\}\,.$$
A

State the centre and the radius of $C$. Choose a parametric representation $\,\mathbf r(u)\,$ of $C$ corresponding to one passage around the circle. Determine the Jacobian that corresponds to your parametric representation.

B

Plot the parametrization in Maple.

In general, when creating a parametrization, always plot it while you are creating it to visually verify your result. Often, when a parametrization is just a bit off, the visual impact is dramatic. Also, plotting it will help you to not forget to also define the parameter intervals.

C

Given the function $\,f(x,y,z)=x^2+y^2+z^2\,,$ determine the restriction $\,f(\mathbf r(u))\,.$ Then compute the line integral

$$\,\int_C\,f\,\mathrm d\mu\,.$$

D

Does the line integral depend on the parametric representation you chose for the circle? Test other parametric representations and compute the line integral based on these. You could for instance change direction of the “passage”/”drawing direction” by changing parameter signs within the trigonometric functions, or you could change the “passage speed” by adjusting both coefficients and interval. (After any such adjustment, check the plot to ensure that you are still drawing the same geometry and did not make a mistake.)

E

Does the line integral depend on the location of the circle? Try to displace the circle by $1$ upwards (parallel to the $y$ axis), and compute the line integral again.

F

Discuss the above two results with a fellow student. Why is this the case?

Exercise 9: Arc Length Using Mid-Point Sums (Advanced)

eNote 23 uses left sums throughout. But it is also possible to use right sums or even mid-point sums! We will try a mid-point-sum approach in this exercise to compute the length of the parabolic arc segment

$$\left\{(u,v)\,|\,v=u^2\,;\,u\in\left[\,0,1\,\right]\right\}\,.$$
A

Assume that the interval $\left[\,0,1\,\right]$ is subdivided into $n$ segments of equal length $\delta u$, and let the division points be denoted $u_i$ as in eNote 23. Connect the points on the parabola vertically above the division points with straight line segments (parabola chords). Then the sum of the lengths of the chords will be a good approximation of the arc length.

Show that the sum of chord lengths can be expressed as

$$\sum_{i=1}^{n} \sqrt{1+(2u_i+\delta u)^2}\,\,\delta u\,.$$

B

Explain why the above is a mid-point sum for the function

$$f(u)=\sqrt{1+4\,u^2}\,.$$

Then determine the arc lenght of the parabolic arc using Maple.