\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Teaser Exercise

This exercise should be solved by hand.

A

Determine all extrema of the function $f (x,y) = x^2y+y.$

Exercise 2: Application of the Hessian Matrix

This exercise should be solved by hand.

A

Show that the function $\,f (x,y) = x^2+4y^2-2x-4y\,$ has exactly one extremum. Determine the extremum point, investigate whether it is a maximum or a minimum, and compute the extremum value.

B

What is the difference between an extremum and a proper extremum? Is the result above a proper extremum?

Exercise 3: Local Extrema for Functions of Two Variables

We are given the function $f:\reel^2\rightarrow\reel$ with the expression

$$f(x,y)=x^3+2y^3+3xy^2-3x^2.$$
A

Show that the points $\,A=(2,0)\,,$ $B=(1,-1)\,$ and $\,C=(0,0)\,$ are stationary points of $\,f\,$ and investigate for each of these whether they are local maximum points or local minimum points. If so, state the local maximum value/minimum value, and decide whether they are proper.

B

Show that the approximating second-degree polynomial of $\,f\,$ with development point $\,A\,$ can be written as an equation with the unknowns $x,y$ and $z$ on this form:

$$z-c_3=\frac 12\,\lambda_1(x-c_1)^2+\frac 12\,\lambda_2(y-c_2)^2.$$

Which quadratic surface does this equation describe, and what do the constants mean?

C

Draw the graph of $f$ together with the graph of the approximating second-degree polynomials of $f$ with the development points $A\,,$ $B$ and $C\,.$ Discuss whether you from the eigenvalues of the Hessian matrices at these three points can decide which type of quadratic surface the second-degree polynomials describe.

Exercise 4: Global Maximum and Global Minimum

A function with domain $\reel ^2$ is given by

$$f(x,y)=xy(2-x-y)+1.$$

Let $\,M\,$ denote the region in the $\,(x,y)$-plane where $\,x\in\left[ 0,1\right]$ and $y\in\left[ 0,1\right]\,.$

A

Find by hand all stationary points of $\,f\,$ on $\,M\,.$

B

Determine the global maximum and global minimum of $\,f\,$ on $\,M\,$ along with the points at which these values are attained.

C

Determine the range of $\,f\,$ on $\,M\,.$

D

Plot the graph of $f$ with points that show where on the graph the maximum and the minimum value are attained, and do a visual check of whether your results look alright.

Exercise 5: Global Maximum and Global Minimum

Consider the function $f:\reel^2\rightarrow\reel$ given by

$$f(x,y)=x^2-3y^2-3xy$$

and the set $\,M=\lbrace\,(x,y)\,|\,x^2+y^2\leq 1\,\rbrace\,.$

A

Explain that $\,f\,$ has both a global maximum and a global minimum on $\,M\,.$ Determine these values and state the points at which they are attained.

Exercise 6: Global Extrema for a Function of Three Variables

We consider a function $f:\reel^3\rightarrow \reel$ given by

$$\,f(x,y,z)=\sin(x^2+y^2+z^2-1)-x^2+y^2-z^2\,,$$

and we consider the solid unit sphere

$$\mathcal K=\left\{(x,y,z)\in \reel^3\,|\,x^2+y^2+z^2\leq 1\right\}\,.$$
A

Show that $\,f\,$ in the interior of $\,\mathcal K\,$ only has one stationary point, that being $\,O=(0,0,0)\,,$ and investigate whether $\,f\,$ has an extremum at $\,O\,.$

B

State the global maximum value and the global minimum value of $\,f\,$ on $\,\mathcal K\,$ and the points at which these values are attained.

C

Determine the range of $\,f\,$ on $\,\mathcal K\,.$

Exercise 7: Supplementary Exercise

We are given a function $f:\reel^2\rightarrow\reel$ with the expression

$$f(x,y)=\exp(x^2+y^2)-4xy\,.$$
A

Find all stationary points of $\,f\,.$

B

Find all extrema.

C

Decide whether $\,f\,$ has a global maximum or minimum, and state the values of these if they exist.

D

State the range of the function.