\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: The Equations of the Circle and the Sphere on Standard Form

In an ordinary $(O,\mathbf i, \mathbf j)$ coordinate system in the $(x,y)$ plane a circle can be described by the well-known quadratic equation:

$$\,(x-c_1)^2+(y-c_2)^2=r^2\,$$

where $(c_1,c_2)$ is its centre and $r$ its radius. We call this the standard form or standard equation.

A

State the standard equation of the circle in the figure.

cirkel2.png

B

A circle has the equation

$$\,x^2+y^2+8x-6y=0\,.$$

We cannot yet see that it actually is a circle. Bring it to standard form and state its centre and radius.

C

A sphere in $(x,y,z)$ space has the equation

$$x^2+y^2+z^2-2x+4y-6z+13 = 0\,.$$

Bring it to the standard form

$$(x-c_1)^2+(y-c_2)^2+(z-c_3)^2=r^2,$$

and state its centre and radius.

Exercise 2: The Standard Equations of the Three Typical Conic Sections

In the following questions we look at quadratic equations with more variables but without mixed terms. In these cases it is possible to proceed by “removing” the linear terms in the equations. This technique is called completing the square and was practiced in Exercise 1 with the simpler circles and spheres. The general goal with this topic is to become able to figure out and to characterize the shapes (conic sections) that the equations describe.

A

An general ellipsis in the $(x,y)$ plane centred at $(c_1,c_2),$ and with the semi axes $a$ and $b$ and the axes of symmetry $x=c_1$ and $y=c_2$ has the standard equation

$$\frac{(x-c_1)^2}{a^2}+\frac{(y-c_2)^2}{b^2}=1.$$

A specific ellipsis is given by the equation

$$\,4x^2+y^2+8x-6y+9=0\,.$$

Complete the square, bring the equation to standard form, and state the centre of the ellipse, the semi axes and the axes of symmetry.

B

A general hyperbola in the $(x,y)$ plane centered at $(c_1,c_2),$ with the semi axes $a$ and $b$ and the axes of symmetry $x=c_1$ and $y=c_2$ has the standard equation

$$\frac{(x-c_1)^2}{a^2}-\frac{(y-c_2)^2}{b^2}=1,$$

or alternatively if it is not horizontal, but vertical:

$$\frac{(y-c_2)^2}{a^2}-\frac{(x-c_1)^2}{b^2}=1.$$

A specific hyperbola is given by the equation

$$\,x^2-y^2-4x-4y = 4\,.$$

Complete the square, bring the equation to standard form, and state the centre of the hyperbola, the semi axes and the axes of symmetry.

C

A general parabola in the $(x,y)$ plane with vertex $(c_1,c_2)$ and axis of symmetry $x=c_1$ has the standard equation

$$y-c_2=a(x-c_1)^2,$$

or alternatively, if it is not vertical but horizontal with the axis of symmetry $y=c_2$:

$$x-c_1=a(y-c_2)^2.$$

A specific parabola is given by the equation

$$\,2x^2+12x-y+17=0\,.$$

Complete the square, bring the equation to standard form, and state the vertex of the parabola and the axis of symmetry.

Exercise 3: Identification of a Conic Section

In an ordinary $(O,\mathbf i, \mathbf j)$ coordinate system in the $(x,y)$ plane a conic section is given by the following quadratic equation with two variables:

$$9x^2+16y^2-24xy-40x-30y+250=0.$$

We cannot readily see from the equation which shape (which conic section) is represents (if any). In the following questions we will determine its type and characterize it as in the previous exercise.

A

The left-hand side of the quadratic equation can be split into three components:

  1. A quadratic form. Let’s denote it $k(x,y)$.
  2. Linear terms forming a linear polynomial.
  3. A constant.

State the quadratic form and determine its Hessian matrix.

B

Determine a symmetric $2\times 2$ matrix $\mA$ that fulfills

$$\,\displaystyle{k(x,y)=\begin {matr}{cc} x & y \end{matr}\mA\begin{matr}{rr} x \newline y \end{matr}\,,}$$

and find a positive orthogonal matrix $\mathbf{Q}$ and a diagonal matrix $\mathbf{\Lambda}$, such that

$$\mathbf{Q}^{\transp}\cdot\mA\cdot\mathbf{Q}=\mathbf{\Lambda}\,.$$

C

Now reduce $k$.

D

In a new coordinate system $(O,\mathbf q_1,\mathbf q_2),$ that appears by rotating $(O,\mathbf i, \mathbf j),$ the equation for the given conic section is changed so as to be without mixed terms. State the orthonormal basis that defines this new rotated coordinate system, and determine the new equation for the conic section.

E

Which type of conic section are we talking about? Characterize it, both in terms of the new and in the original coordinate system. Illustrate with Maple.

Exercise 4: Determination of a Conic Section

A

In an ordinary orthogonal $(x,y)$ coordinate system a curve is given by the equation:

$$52x^2+73y^2-72xy-200x-150y+525=0.$$

Describe the type and position of the curve, and provide parametric representations for any axes of symmetry.

B

Plot using Maple the conic section, both in the new and the original coordinate system, as well as the axes of symmetry. Compare with a plot of level curves for the polynomial

$$f(x,y)=52x^2+73y^2-72xy-200x-150y+525\,.$$

In particular, consider the level curve corresponding to a height of $0$!