\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Homogeneous Second-Order Differential Equations

By hand.

A

Given the homogeneous differential equation \begin{equation} x^{\prime \prime}(t)+2x’(t)+5x(t)=0, \quad t \in \reel, \end{equation}

find the general solution.

B

Given the homogeneous differential equation
\begin{equation} x^{\prime \prime}(t)-6x’(t)+9x(t)=0, \quad t \in \reel, \end{equation}

find the general solution.

C

Given the homogeneous differential equation \begin{equation} x^{\prime \prime}(t)+3x’(t)-4x(t)=0, \quad t \in \reel, \end{equation}

find the general solution.

Exercise 2: Inhomogeneous Differential Equation with Initial Conditions

Maple exercise.

We are given the inhomogeneous differential equation \begin{equation} x^{\prime \prime}(t)+4x’(t)+29x(t)=-25\sin(2t)+\frac{109}{4}\mathrm e^{-\frac 12 t}-8\cos(2t), \quad t \in \reel. \end{equation}

A

Find using Maple’s dsolve the general solution to the differential equation.

B

Plot the solution whose graph passes through the point $(0,1)\,$ and whose tangent has a slope of $-\frac 52\,$ at $\,t=0\,$. Then plot the solution whose graph also passes through the point $(0,1)\,,$ but whose tangent has a slope of $\,\frac 12\,$ at $\,t=0\,$.

Exercise 3: The Structural Theorem

Consider the linear map $\,f:C^{\infty}(\reel)\rightarrow C^{\infty}(\reel)\,$ given by

$$ f(x(t))=x^{\prime \prime}(t)+3x'(t)-4x(t)\,. $$
A

Guess a particular solution to the inhomogeneous differential equation

$$ f(x(t))=29-12t $$

and then state the general solution to the equation.

B

Find using the guessing method a particular solution to the inhomogeneous differential equation

$$ f(x(t))=\cos(t) $$

and then state the general solution to the equation.

C

Find a particular solution to the inhomogeneous differential equation

$$ f(x(t))=29-12t+\cos(t)$$

and then state the general real solution to the equation.

Given that the set of vectors

$$\,v=\big(\,\cos(t),\sin(t),\e^t,t,1\,\big)\,,\,\,t\in \reel\,$$

is linearly independent (this has been proven in exercises from a previous week), consider the restriction of $\,f\,$ to the 5-dimensional subspace $\,U\,$ in $\,C^{\infty}(\reel)\,$ that has $\,v\,$ as a basis.

D

Show that the image $\,f(U)\,$ is a subspace in $\,U\,,$ and determine the mapping matrix $\,\matind vFv\,$ of the map $f:U\rightarrow U\,$ with respect to basis $\,v\,.$

E

State the coordinate vector of

$$\,q(t)=\cos(t)+29-12t\,$$

and find all solutions in $\,U\,$ to the equation

$$\,f(x(t))=q(t)\,.$$

F

Does a particular solution $\,x_0(t) \in U\,$ exist to the equation

$$\,f(x(t))=q(t)\,$$

that satisfies the initial conditions $\,x_0(0)=0\,$ and $\,x_0’(0)=1\,?$

Exercise 4: Modelling of a Physical Scenario

You will now model a physical scenario using Maple, and you will use the model for experimentation. The procedure is that you execute the Maple commands one at a time - so do not use the execution button !!! in Maple that executes the entire sheet at once. Fields with XX must be replaced with your own Maple command along the way. When you have finished an answer, then you are welcome to open the Solution tab for a suggested solution.

A

Download the file eMaple3 and have fun with the modelling.

Exercise 5: Uniqueness of the Solution. Theory

About a differential equation on the form \begin{equation} x^{\prime \prime}(t)+a_1x’(t)+a_0x(t)=q(t), \quad t \in \reel \end{equation}

we are informed that $\,x_1(t)=\sin(t)\,$ and $\,x_2(t)=\frac{1}{2}\sin(2t)\,$ both are solutions.

A

Prove using the existence and uniqueness theorem that this statement is false.

Exercise 6: Structure of Solutions. Theory

We are given the inhomogeneous differential equation \begin{equation} x^{\prime \prime}(t)+a_1x’(t)+a_0x(t)=q(t), \quad t \in \reel \end{equation}

together with two particular solutions, \begin{equation} x_1(t)=\sin t+2\e^t \quad \mathrm{and} \quad x_2(t)=\sin t+\e^t-\e^{-t}. \end{equation}

A

Determine the general solution to the homogeneous equation.

B

Determine the general solution to the inhomogeneous equation.

C

Determine $\,a_0,\,a_1\,$ and $\,q(t)\,.$

Exercise 7: The Complex Guessing Method

A

Determine a particular solution to the complex differential equation \begin{equation} x^{\prime \prime}(t)-2x’(t)-3x(t)=10\,\e^{(-1+2i)t}, \quad t \in \reel. \end{equation}

B

Determine a particular solution to the differential equation \begin{equation} x^{\prime \prime}(t)-2x’(t)-3x(t)=10\,\e^{-t}\,\cos(2t), \quad t \in \reel. \end{equation}

C

Determine a particular solution to the differential equation \begin{equation} x^{\prime \prime}(t)-2x’(t)-3x(t)=10\,\e^{-t}\,\sin(2t), \quad t \in \reel. \end{equation}

Exercise 8: From the Solution to the Differential Equation

All real solutions to an inhomogeneous linear differential equation of second order are \begin{equation} x(t)=c_1\e^{-t}\cos 2t+c_2\e^{-t}\sin 2t+5t^3+t^2+12t+7,\quad (c_1,c_2)\in\reel^2. \end{equation}

A

State the differential equation.