\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Lengths and Angles in $\,\reel^n\,$

By hand. In the vector space $\,\reel^5\,$ (equipped with the ordinary scalar product) the vectors

$$\ma=(-2,0,2,2,-2)\,\,\,\,\mathrm{and}\,\,\,\,\mb=(1,2,-1,-1,1)\,$$

are given.

A

Determine the length of the two vectors and the angle between them.

For two proper, non-parallel vectors $\,\ma\,$ and $\,\mb\,$ in the plane the vector

$$\,\mathbf u=\mb -\mathrm{proj(\mb,\ma})\,$$

is always orthogonal (perpendicular) to $\,\ma\,$ as illustrated on the figure.

proj3.png

B

Determine for the given vectors $\,\ma\,$ and $\,\mb\,$ in $\,\reel^5\,$ the vector

$$\,\mathbf u=\mb -\mathrm{proj(\mb,\ma})\,,$$

and show that it is orthogonal (perpendicular) to $\,\ma\,.$

Exercise 2: Orthonormal Basis. By Hand

A

Do the vectors

$$\mv_1=\left( \frac{1}{3},\frac{2}{3},\frac{2}{3}\right) \quad \mv_2=\left( \frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)\quad \mv_3=\left( \frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

constitute an orthonormal basis for $\,\reel^3\,?$

B

Provide an orthonormal basis for $\,\reel^3\,$ where $\,\,\displaystyle{\left(\frac {\sqrt 2}2,\frac {\sqrt 2}2,0\right)}\,\,$ is the first basis vector.

Exercise 3: Orthonormalization. By Hand

A

Determine the solution set to the homogeneous equation

$$x_1+x_2+x_3=0$$

and explain that it is a subspace of $\,\reel^3\,.$ Provide an orthonormal basis for this solution space.

Exercise 4: Orthogonal matrix. By Hand

A

Are the following matrices orthogonal?

$$\mA=\begin{matr}{rr} \frac{3}{2} & \frac{1}{2} \newline -\frac{1}{2} & \frac{1}{2} \end{matr}$$
$$\mB=\begin{matr}{rr} \frac{1}{2} & 0 \newline 0 & 2 \end{matr}$$
$$\mC=\frac{1}{5}\begin{matr}{rr} 3 & -4 \newline 4 & 3 \end{matr}$$
$$ \mD=\frac{1}{2}\begin{matr}{rrrr} 1 & -1 & 1 & 1 \newline 1 & 1 & -1 & 1 \newline 1 & -1 & -1 & -1 \newline 1 & 1 & 1 & -1 \newline \end{matr} $$

Exercise 5: Orthogonal Matrix. By Hand

We are given the matrix

$$ \mA=\begin{matr}{rrrr} 0 & -a & 0 & a \newline a & 0 & a & 0 \newline 0 & -a & 0 & -a \newline -a & 0 & a & 0 \end{matr}. $$
A

Determine the values of $a$ for which $\mA$ is orthogonal.

B

Determine the values of $a$ for which $\mA$ is special-orthogonal.

Exercise 6: Symmetric Matrices. Theory Exercise

We are given the matrix

$$\mA=\begin{matr}{rr} a & c \newline c & b \end{matr}\,$$

where $\,a,\,b$ and $c\,$ are real numbers. Note that $\,\mA=\mA^{\transp}\,$, so $\,\mA\,$ is symmetric.

A

Show that $\,\mA$’s eigenvalues are real.

B

Show as a consequence of the above that if $\,\mA\,$ is not a diagonal matrix, then it has two different (real) eigenvalues.

Exercise 7: Diagonalization by Orthogonal Substitution

We are given the symmetric matrix

$$ \mA=\begin{matr}{rrr} -2 & 1 & 1 \newline 1 & -2 & -1 \newline 1 & -1 & -2 \end{matr}. $$
A

Provide an orthogonal matrix $\,\mathbf{Q}\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ such that

$$\,\mathbf{Q}\transp \cdot\mA\cdot\mathbf{Q}=\mathbf{\Lambda}\,.$$

Exercise 8: Particular Orthogonal Matrix

We are given the matrices

$$\mA=\begin{matr}{rrr} 1 & -1 & 2 \newline -1 & 1 & 2 \newline 2 & 2 & -2 \end{matr}\quad\mathrm{and}\quad\mB=\begin{matr}{rrr} 2 & -1 & -1 \newline -1 & 2 & -1 \newline -1 & -1 & 2 \end{matr}.$$
A

Show that the characteristic polynomial of $\,\mA\,$ has the single root $-4$ as well as a double root.

B

Determine a proper eigenvector $\,\mv_1\,$ of $\,\mA\,$ corresponding to the root $-4$.

C

Show that the characteristic polynomial of $\,\mB\,$ also has a single root, which is $0$, as well as a double root.

D

Determine a proper eigenvector $\,\mv_2\,$ of $\,\mB\,$ corresponding to the root $0$.

E

Show that $\,\mv_1 $ and $\mv_2$ are orthogonal.

F

Determine by using the results above an orthogonal matrix $\,\mathbf Q\,$ that can diagonalize both $\,\mA\,$ and $\,\mB\,$ by orthogonal substitution. State the results of both $\,\mathbf Q\transp\cdot\mA\cdot\mathbf Q\,$ and $\,\mathbf Q\transp\cdot\mB\cdot\mathbf Q\,.$

Exercise 9: A Subspace of $\reel^4$ and Its Orthogonal Complement

In $\,\reel^4\,$ we are given the vectors

$$\mv_1=(1,1,1,1),\,\mv_2=(3,1,1,3),\,\mv_3=(2,0,-2,4)\,\,\,\,\mathrm{and}\,\,\,\,\mv_4=(1,1,-1,3).$$

A subspace $\,\mathbf U\,$ in $\,\reel^4\,$ is determined by $\,\mathbf U=\spanVec\lbrace\mv_1,\mv_2,\mv_3,\mv_4\rbrace\,.$

A

Show that $\,(\mv_1,\mv_2,\mv_3)\,$ is a basis for $\,\mathbf U\,,$ and find the coordinate vector of $\,\mv_4\,$ with respect to this basis.

B

State an orthonormal basis for $\,\mathbf U\,.$

C

Determine the orthogonal complement in $\,\reel^4\,$ to $\,\mathbf U\,.$