\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: The Orthogonal Complement

A

In $\,\reel^2\,$ the vector $\,(3,7)\,$ is given. Provide a basis for the orthogonal complement.

B

Find in $\,\reel^3\,$ a basis for the orthogonal complement to $\,\mv=(1,2,3)\,.$

C

Find in $\,\reel^3\,$ a basis for the orthogonal complement to the subspace spanned by $\,(1,1,0)\,$ and $\,(0,2,1)\,.$

D

Find in $\,\reel^4\,$ a basis for the orthogonal complement to the subspace spanned by $\,(1,-1,2,5)\,$ and $\,(0,1,0,-2)\,.$

Exercise 2: When There are $\,n\,$ Different Eigenvalues

A

Why is it particularly easy to diagonalize a symmetric $\,n\times n\,$ matrix by orthogonal substitution, if it has $\,n\,$ different eigenvalues?

A $\,3\times 3$ matrix $\,\mA\,$ has been treated in Maple, like this:

symM.png

B

State $\,\mA\,$ in ordinary mathematical notation and explain that it is symmetric.

C

Let $\,f\,$ denote the linear map that has the mapping matrix $\,\mA\,$ with respect to the standard basis in $\,\reel^3\,.$ Determine an orthonormal basis for $\,\reel^3\,$ consisting of eigenvectors of $\,f\,,$ and state the mapping matrix that represents $\,f\,$ with respect to the orthonormal basis found.

D

Determine an orthogonal matrix $\,Q\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ such that

$$\,\mathbf Q\transp\cdot\mA\cdot\mathbf Q=\mathbf{\Lambda}\,.$$

Exercise 3: Eigenspaces with gm > 1

A $\,3\times 3$ matrix $\,\mB\,$ has been treated in Maple like this:

symM2.png

A

State $\,\mB\,$ and explain that it is symmetric.

B

Determine an orthogonal matrix $\,Q\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ such that

$$\,\mathbf B=\mathbf Q\cdot \mathbf{\Lambda}\cdot\mathbf Q\transp\,.$$

Exercise 4: Special-Orthogonal Matrix

A linear map $\,f:\reel^2\rightarrow \reel^2\,$ is given by the mapping matrix

$$\,\begin{matr}{rr}5&\sqrt{3}\newline \sqrt{3}&7\end{matr}\,.$$
A

Exactly eight possible orthonormal bases for $\,\reel^2\,$ consisting of eigenvectors of $\,f\,$ exist. Make a drawing where the basis vectors drawn from the origin are shown.

B

Four of the eight bases have the standard orientation. Show that the orthogonal matrix that belongs to each of the four is special-orthogonal (has a determinant of 1), while the other four are not.

Exercise 5: Special-Orthogonal Matrix as Mapping Matrix

Every special-orthogonal matrix in $\,\reel^{2\times 2}\,$ can be written on the form

$$\,\mQ=\begin{matr}{rr} \cos(u)&-\sin(u)\newline \sin(u)&\cos(u)\end{matr}\,.$$

Note that $\,u\,$ is the directional angle for the first basis vector $\,(\cos(u),\sin(u))\,.$ Or more precisely: The q-coordinate system appears as a rotation of the standard coordinate system by the angle $\,u\,.$ Now we will investigate how $\,\mQ\,$ works as a mapping matrix.

A

Explain that the image $\,\my=\mathbf Q\cdot\mx\,$ appears after rotating the vector $\,\mx\,$ by the angle $\,u\,$ on the figure.

drejQ.png

B

Open the GeoGebra sheet OrthogonalMap . Verify that while $\,\mQ\,$ maps $\,\mx\,$ in $\,\my\,$ by rotation by angle $\,u\,,$ then $\,\mQ\transp\,$ does the opposite: It maps $\,\mx\,$ in $\,\mz\,$ by rotation by angle $\,-u\,.$

$\,(\,\mathbf q_1,\mathbf q_2)\,$ is a basis corresponding to $\,\mQ\,$ while $\,(\,\mathbf q_3,\mathbf q_4)\,$ is a basis corresponding to $\,\mQ\transp\,$. $\,\mQ\,$ maps $\,\mx\,$ in $\,\my\,$ and $\,\mQ\transp\,$ maps $\,\mx\,$ in $\,\mz\,$.

  • Move the vector $\,\mx\,$. What happens to $\,\mx\,$, $\,\my\,$ and $\,\mz\,$ regarding lengths and angles?

  • Move the vector $\,\mathbf q_1\,$. What happens to $\,\mx\,$, $\,\my\,$ and $\,\mz\,$ regarding lengths and angles?

Exercise 6: Analysis of a Symmetric Map

Assume that a symmetric $\,2\times 2\,$ matrix $\,\mA\,$ has been diagonalized by a special-orthogonal substitution like this:

$$\,\mathbf Q\transp\cdot\mA\cdot\mathbf Q=\mathbf{\Lambda}\,.$$
A

Show that it conversely applies that:

$$\mA=\mathbf Q\cdot\mathbf{\Lambda}\cdot\mathbf Q\transp \,.$$

B

In continuation of this, explain that therefore a symmetric map is composed like this:

  1. The object is rotated by the angle $-u\,$ where $\,u\,$ denotes the directional angle for the first column in $\,\mQ\,.$

  2. The rotated object is scaled by the factor $\,\lambda_1\,$ in the direction of the first axis and by the factor $\,\lambda_2\,$ in the direction of the second axis.

  3. The scaled object is rotated (“backwards”) by the angle $\,u\,.$

C

Consider the matrix

$$\,\mB=\begin{matr}{rr}2&1\newline 1&2\end{matr}\,$$

as a mapping matrix for geometric vectors in the plane drawn from the origin. Find an angle of rotation $\,u\,$ to use for step 1 and 3 when composing the map. Determine the factors that in step 2 are needed for scaling in the direction of the first axis and second axis, respectively.

Now we shall factorize and analyse the mapping matrix

$$\,\mA=\begin{matr}{rrr}2&1&0\newline 1&2&0\newline 0&0&1\end{matr}\,$$

using the formula $\,\mA=\mathbf Q\cdot\mathbf{\Lambda}\cdot\mathbf Q\transp \,.$

Download the Maple demo AnalysisSymMatrix.

D

Follow closely the 3 steps of forming the map. Try with other parameters, e.g.

$$\,u=-\frac{\pi}{3}\,,\, a=5\,,\, b=-2\,.$$