\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Geometric Determination of Eigenvalues and Eigenvectors

Open the GeoGebra sheet Eigenvalue1.

A

We consider the set of plane vectors in a standard $\,(O, \mathbf i, \mathbf j)\,$-coordinate system. All vectors are considered to be drawn from the origin. $\,\mathbf F\,$ constitutes the mapping matrix of a linear map $f\,$ with respect to the standard basis. An arbitrary vector $\,\mathbf x\,$ is drawn in blue, while the image vector $\,\mathbf y=f(\mathbf x)\,$ is red.

  1. Right click (on Mac, Ctrl+click) on $\,\mathbf x\,$ and choose Animation on. How many times is $\,\mathbf y=f(\mathbf x)\,$ parallel to $\,\mathbf x\,$ during a passage of the circle?

  2. Stop the animation with the undo-button in the tool bar. Move (using the cursor) $\,\mathbf x\,$ to the first position where the two vectors are parallel, and determine the ratio between the length of $\,\mathbf y\,$ and the length of $\,\mathbf x\,$. Use the same procedure on the other positions where the two vectors are parallel.

  3. Explain that we (in general) can determine all eigenvalues of $f$ by letting $\,\mathbf x\,$ pass a semicircle of (e.g.) radius $1\,$.

Open the GeoGebra sheet Eigenvalue2.

B
  1. Rotate $\,\mathbf x\,$ in a semicircle and find all eigenvalues. Furthermore state for each eigenvalue a corresponding (integer) eigenvector.

  2. Check that the eigenvalues found are roots of the characteristic polynomial (by hand).

  3. Check using paper and pencil that the eigenvectors found are the right ones.

  4. You can change $\,\mF\,$ by moving the column vectors $\,\mathbf s1\,$ and $\,\mathbf s2\,$. Repeat the experiment for the points $1,\,2$ and $3$ above using the following settings of $\,\mF\,$: $\begin{matr}{rr}1&0\newline 2&-3\end{matr}\,$, $\,\begin{matr}{rr}3&-1\newline 1&1\end{matr}\,$ and $\,\begin{matr}{rr}-2&4\newline 1&-2\end{matr}\,.$ What are the characteristic differences in each of the three scenarios?

  5. Set $\,\mF\,$ to $\,\begin{matr}{rr}2&2\newline -1&4\end{matr}\,.\,$ Rotate $\,\mathbf x\,$ through the semicircle and read all real eigenvalues.

Exercise 2: Eigenvalues and Eigenvectors

We are given the matrix

$$\mA=\begin{matr}{rr}2&2\newline -1&4\end{matr}\,.$$
A

Set up the characteristic matrix of $\mA$.

B

Set up the characteristic polynomial of $\mA$.

C

Set up the characteristic equation of $\mA$ and compute from this the eigenvalues of $\mA\,.$

D

Now set up the characteristic matrix of $\mA$ corresponding to one of the eigenvalues, and find using this the eigenspace corresponding to the eigenvalue.

E

State without further calculations the eigenspace that corresponds to the other eigenvalue.

F

Check the results using Maple’s Eigenvectors command. Use the argument output=list within the command and explain the meaning of each result in the output.

Exercise 3: Eigenvalues and Eigenvectors. By Hand

A linear map $\,f: \reel^3\rightarrow\reel^3\,$ is with respect to the standard basis in $\,\reel^3\,$ given by the mapping matrix \begin{equation} \mA=\begin{matr}{rrr} 1 & -1 & 1 \newline 2 & 4 & -1 \newline 0 & 0 & 3 \end{matr}\,. \end{equation}

A

Determine the characteristic polynomial and find the eigenvalues of $\,f\,$. State the algebraic multiplicity of the eigenvalues. Determine the real eigenspaces that correspond to each of the eigenvalues, and state the geometric multiplicity of the eigenvalues.

B

If possible choose a basis for $\reel^3$ with respect to which the mapping matrix of $f$ becomes a diagonal matrix. State this diagonal matrix.

Now we consider the matrix \begin{equation} \mB=\begin{matr}{rrr} 1 & 1 & 0 \newline 2 & -1 & -1 \newline 0 & 2 & 1 \end{matr}. \end{equation}

C

Compute the eigenvalues of $\mB$ and state their algebraic multiplicities. Determine the real eigenspaces corresponding to each of the eigenvalues, and state the geometric multiplicities of the eigenvalues.

D

If possible create a regular matrix $\,\mV\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ that satisfy

$$\,\mV^{-1}\cdot\mB\cdot\mV=\mathbf{\Lambda}\,.$$

Exercise 4: Linear Stretching in the Plane

Open the GeoGebra sheet Eigenvalue3.

A
  1. $\,\mF\,$ maps the blue object on the red one. Find by moving the column vectors $\,\mathbf s1\,$ and $\,\mathbf s2\,$ a diagonal matrix that maps the blue object to a red object on the dashed position.

  2. Also consider the maps that correspond to $\,\,\begin{matr}{rr} 3 &0 \newline 0 & -2 \end{matr}\,\,$ and $\,\,\begin{matr}{rr} 1 &0 \newline 0 & 2 \end{matr}\,\,.$

  3. Explain that in general it holds true that the diagonal elements in diagonal matrices are eigenvalues of $\,\mathbf F\,$ with $\,\mathbf i\,$ and $\,\mathbf j\,$, respectively, as corresponding eigenvectors. What do the eigenvalues have to do with expansion or contraction in the direction of $\,\mathbf x1\,$ and $\,\mathbf x2\,$, respectively?

Open the GeoGebra sheet Eigenvalue4.

B
  1. Move $\,\mathbf x1\,$ and $\,\mathbf x2\,$ such that $\,(\mathbf x1,\mathbf x2)\,$ becomes a new basis consisting of eigenvectors of $f$ , and state the corresponding eigenvalues. Note, the eigenvectors should be as short as possible while keeping their coordinates integers.

  2. Which coordinates does the point $\,(6,1)\,$ have in the new $\,(O,\mathbf x1,\mathbf x2)$-coordinate system?

Open the GeoGebra sheet Eigenvalue5.

C

The blue object is fixed in the $\,(O,\mathbf x1,\mathbf x2)$-coordinate system.

  1. Set the mapping matrix to $\,\,\mF=\begin{matr}{rr} 1 &-2 \newline -1 & 0 \end{matr}\,\,$ by moving the column vectors $\,\mathbf s1\,$ and $\,\mathbf s2\,.$

  2. Find by moving $\,\mathbf x1\,$ and $\,\mathbf x2\,$ a new basis $\,(\mathbf x1,\mathbf x2)\,$ consisting of eigenvectors of $\mF$, and determine the corresponding eigenvalues. State the mapping matrix with respect to the basis $\,(\mathbf x1,\mathbf x2)\,.$ How do you see the relation between the blue and the red object?

  3. Repeat the investigation in the preceding question with the mapping matrix that is given in the GeoGebra sheet Eigenvalue6.

  4. Formulate a consolidated hypothesis about what eigenvalues and their corresponding eigenvectors say about the linear map they stem from.

Exercise 5: Eigenvalues in Functional Spaces

Consider the linear map $\,f:C^{\infty}(\reel)\rightarrow C^{\infty}(\reel)\,$ given by

$$ f(x(t))=x'(t)-x(t)\,.$$
A

Explain that for every $\,k \in \reel\,$ the function $\,\e^{k\cdot t}\,$ (where $\,t\in \reel\,$) is an eigenvector of $\,f\,,$ and state the corresponding eigenvalue.

B

Explain that the four functions $\,\e^{k\cdot t}\,$ where $\,k\in\lbrace-1,0,1,2\rbrace\,$ are linearly independent.

Let $\,U\,$ denote the subspace in $\,C^{\infty}(\reel)\,$ that has the basis $\,v=(\e^{-t},\,1,\,\e^t,\,\e^{2\cdot t}\,)\,.$

C

Show that the image space $\,f(U)\,$ is a subspace of $\,U\,,$ and determine the mapping matrix $\,\matind vFv\,$ of the map $f:U\rightarrow U\,$ with respect to basis $\,v\,.$

D

Determine the coordinate vector for

$$\,q(t)=-6\e^{-t}+\e^{2t}+2\,$$

with respect to basis $\,v\,,$ and compute, using the mapping matrix found in the previous question, all solutions in $\,U\,$ to the equation

$$\,f(x(t))=q(t)\,.$$

E

Compare the result from the previous question with the output from Maple’s dsolve. Why are there not in $\,C^{\infty}(\reel)\,$ more solutions to the equation

$$\,f(x(t))=q(t)\,\,\,\,\mathrm{in} \,C^{\infty}(\reel)\,$$

than there are in the subspace $\,U\,?$

Exercise 6: Diagonalization of a Matrix. Simulated manually

A linear map $\,f: \reel^3\rightarrow\reel^3\,$ has, with respect to the standard basis for $\,\reel^3\,$, the mapping matrix \begin{equation} \mA=\begin{matr}{rrr} 1 & 0 & 0 \newline 1 & 1 & 1 \newline 1 & 0 & 2 \end{matr}. \end{equation}

A

State a basis $\,v\,$ for $\,\reel^3\,$ with respect to which the mapping matrix of $\,f\,$ becomes a diagonal matrix, and state the corresponding change-of-basis matrix $\,\matind eMv\,$ that changes from $v$-coordinates to $e$-coordinates.

B

State a regular matrix $\,\mV\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$, such that

$$\mathbf{\Lambda}=\mV^{-1}\cdot\mA\cdot\mV\,.$$

Exercise 7: Diagonalization of a Matrix. Maple

A

Compute using Maple’s Eigenvectors command all eigenvalues and corresponding real eigenspaces of the matrix

$$\,\mB=\begin{matr}{rrrr} -1 & -1 & -6 & 3 \newline 1 & -2 & -3 & 0 \newline -1 & 1 &0 & 1 \newline -1 & -1 & -5 & 3 \end{matr}\,.$$

B

Investigate whether a regular matrix $\,\mV\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ exist, such that

$$\mathbf{\Lambda}=\mV^{-1}\cdot\mB\cdot\mV\,.$$

Exercise 8: Eigenvectors Linear Independence. Advanced

Assume that $\,\lambda_1\,$ and $\,\lambda_2\,$ are two different eigenvalues of a matrix $\,\mA\,.$ Then vectors $\,\mv_1\neq 0\,$ and $\,\mv_2\neq 0\,$ exist such that \begin{equation} \mA\cdot\mv_1=\lambda_1\cdot\mv_1\;\mathrm{and}\;\mA\cdot\mv_2=\lambda_2\cdot\mv_2,\quad\mathrm{where}\;\lambda_1\neq\lambda_2\,. \end{equation}

A

Show that the eigenvectors $\,\mv_1\,$ and $\,\mv_2\,$ are linearly independent.

B

Compare the result obtained here with Corollary 13.9 in eNote 13 about the linear independence of eigenvectors.