\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: The General Solution formula. By Hand

We are given the inhomogeneous differential equation

\begin{equation} x’(t)-2x(t)=\e^t\,, \,\, t \in \reel\,.\end{equation}

A

Compute using the general solution formula (Theorem 16.16) the general solution to the differential equation.

B

Compute the solution whose graph includes the point $(0,1)$.

We are no given the inhomogeneous differential equation \begin{equation} x’(t)+\frac{1}{t}x(t)=-2t^2, \quad t>0.\end{equation}

C

Compute using the general solution formula the general solution to the differential equation.

D

Compute the conditional solution, where $ x(1)=-1$.

For an arbitrary complex number $\,c\neq 0\,$ we consider the differential equation

$$ z'(t)-c\cdot z(t)=2\,. $$
E

Compute using the general formula the general solution to the differential equation.

F

Determine for $\,c=i-1\,$ the conditional solution $\,z(t)\,$ that satisfies $\,z(0)=i\,.$

Exercise 2: The Structural Theorem

In this exercise we use knowledge about linear maps to solve three inhomogeneous linear first-order differential equations. In each example we proceed step by step.

A

A map $f:C^\infty(\reel)\rightarrow C^\infty(\reel)$ is given by

$$\,f(x(t))= x'(t)\,.$$

Show that $f$ is linear and determine $\,\ker(f)\,.$ Compute a solution to the equation $\,f(x(t))= \sin (t)\,$ and then compute the general solution to the equation.

B

A map $f:C^\infty(\reel)\rightarrow C^\infty(\reel)$ is given by

$$\,f(x(t))= x'(t)-x(t)\,.$$

Show that $f$ is linear and determine $\,\ker(f)\,.$ Guess a solution to the equation $\,f(x(t))= 5\,$ and then state the general solution to the equation.

C

A map $f:C^\infty(\reel)\rightarrow C^\infty(\reel)$ is given by

$$f(x(t))= x'(t)+2x(t)\,.$$

Show that $f$ is linear and determine $\,\ker(f)\,.$ Guess a solution to the equation $\,f(x(t))= 2t\,$ and then state the general solution to the equation.

D

State in Leibniz notation the three inhomogeneous linear first-order differential equations that are solved above.

Exercise 3: The General Formula or the Structural Theorem?

We are given the differential equation

$$\,\displaystyle{\frac{\mathrm d}{\mathrm d t}\,x(t)+\cos(t)\cdot x(t)=\cos(t)}\,,\,\,t\in\Bbb R.$$
A

Solve the differential equation using the general formula. First, try by hand while using Maple only for the indefinite integrals. Then solve it with Maple’s dsolve.

B

Solve the differential equation using the structural theorem.

Exercise 4: Superposition

Solve this exercise using the structural theorem, superposition and the guessing method.

A

Guess a solution to the differential equation \begin{equation} x’(t)+x(t)=2\cos t\,,\,\,t\in\Bbb R. \end{equation}

B

Guess a solution to the differential equation \begin{equation} x’(t)+x(t)=t^2-1\,,\,\,t\in\Bbb R. \end{equation}

C

Solve the differential equation

$$ x'(t)+x(t)=2\cos t +t^2-1\,,\,\,t\in\Bbb R.$$

Exercise 5: Solution and Visualization using Maple

Given the inhomogeneous differential equation

$$ x'(t)+\frac{1}{7}\,x(t)=3-2\cos(t). $$
A

Compute using Maple’s dsolve the general solution fo the differential equation.

B

Again compute using Maple the solution that satisfies the initial condition $x(0)=0$.

C

Plot your solution. Create plots with different initial conditions.

Exercise 6: Modelling of a Physical Problem

In this exercise we will be using an interactive approach that we call eMaple. The idea is that you yourself right from the start will be modelling a physical problem using Maple.

Download the Maple sheet, read the text and execute the commands one at a time (do not use Maple’s execution button !!! that will execute the entire sheet at once). After having solved a question you can open the “Solution” tab to see a suggested solution.

A

Now download the file eMaple1 and carry out the modelling problem.

Exercise 7: Differential Equations for Complex-Valued Functions. By Hand

The complex-valued functions $\,z(t)\,$ that are defined for $\,t \in \reel\,$ and that can be differentiated an arbitrary number of times constitute a vector space which we will denote $\,\left(C^\infty(\reel),\mathbb C\right)\,.$

A linear map $\,f:\left(C^\infty(\reel),\mathbb C\right)\rightarrow \left(C^\infty(\reel),\mathbb C\right)$ is given by

$$f(z(t))= z''(t) + z(t)\,.$$
A

Explain that $\,U=\mathrm{span}\lbrace\e^{it},\e^{-it}\rbrace\,$ is a 2-dimensional subspace of $\,\ker(f)\,.$

B

A real function $\,z_0(t)\,$ in $\,U=\mathrm{span}\lbrace{\e^{it},\e^{-it}\rbrace}$ satisfies the initial conditions $\,z(0)=1\,$ and $\,z’(0)=0\,.$ Determine this function $z_0(t)$.

Exercise 8: Linear mappings between Functional Spaces

Let $\,\mathbf{U}\,$ be the subspace of $\,C^\infty (\reel)\,$ that is spanned by the vectors $\,\cos (t)$, $\sin (t)$ and $\e^t\,.$

A

Show that $\,\cos (t)$, $\sin (t)$ and $\e^t\,$ constitute a basis for $\,\mathbf{U}\,$

A linear map $f:C^\infty (\reel)\rightarrow C^\infty (\reel)$ is given by:

$$f(x(t))= x'(t)+2x(t)\,.$$
B

Show that $f$ maps $\mathbf{U}$ into itself.

C

State the mapping matrix of $f:\mathbf{U}\rightarrow\mathbf{U}$ with respect to the basis $(\cos (t), \sin (t), \e^t)$.

Exercise 9: Linear and Nonlinear Differential Equations

Consider the following seven 1st-order differential equations: $ $ $1.\,\,\,\,x’(t)+t \cdot x(t) \cdot (1+x(t))=0, \quad t \in \reel.$

$2.\,\,\,\,x’(t)+t^2\cdot x(t)=0, \quad t \in \reel.$

$3.\,\,\,\,x’(t)+x(t)=t^2, \quad t \in \reel.$

$4.\,\,\,\,x’(t)+(x(t))^2=t, \quad t \in \reel.$

$5.\,\,\,\,x’(t)+t^3 \cdot x(t)=0, \quad t \in \reel.$

$6.\,\,\,\,x’(t)+\e^{x(t)}=1, \quad t \in \reel.$

$7.\,\,\,\,(x’(t))^2+x(t)=0, \quad t \in \reel.$

A

Three of the equations are linear, which?

B

Solve the three linear equations, using Maple for solving it “simulated manually”.

C

Find, using Maple, at least one solution to each of the seven differential equations.

D

Experiment with the solutions: Plot the solutions for different choices of the arbitrary constant $c$.