\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Typical Questions about Linear Maps

A linear transformation $f:\reel^4 \rightarrow\reel^3$ has the following mapping matrix with respect to the standard bases for $\reel^4$ and $\reel^3$:

$$ \mF =\matind eFe =\begin{matr}{cccc} 1 & 1 & 2 & 1 \newline 3 & 0 & 3 & 3 \newline -1 & 2 & 1 & -1 \end{matr} $$
A

Decide by direct matrix-vector product which of the vectors

$$\,\mathbf{u}_1=(1,-1,0,2)\,,\,\mathbf{u}_2=(-1,0,0,1)\,\,\,\,\mathrm{and} \,\,\,\,\mathbf{u}_3=(-1,-2,2,-1)\,$$

that belong to the kernel of $f$.

B

State without further computations whether the vector $\,\mb=(2,9,-5)\,$ belongs to the range $f(\reel^4)$.

C

Compute the dimension of the image space $f(\reel^4)$.

D

State without further computations the dimension of $\mathrm{ker}(f)\,.$

E

State without further computations a basis for $\ker(f)$.

F

State without further computations a basis for $\,f(\reel^4)\,.$

G

State without further computations the solution to the vector equation

$$\,f(\mx)=\mb=(2,9,-5)\,.$$

Exercise 2: Conclusions about the Reduced Mapping Matrix

About the mapping matrix $\,\mF =\matind eFe\,$ of a linear transformation $f:\reel^3\rightarrow\reel^3$ it is given that

$$\mathrm{rref}(\mF)=\begin{bmatrix} 1 & 0 & 3 \newline 0 & 1 & 1 \newline 0 & 0 & 0 \end{bmatrix}\,.$$
A

Read from this a basis for $\mathrm{ker}(f)\,$ and state the dimension of the range $f(\reel^3)$.

B

Is it also possible to determine a basis for the range?

Exercise 3: New Mapping Matrix from Change of Basis

If you change the basis, often you can find a mapping matrix that is more simple and therefore easier to work with.

In the vector space $\,\reel^2\,$ we consider the standard basis $\,e=(\,(1,0),(0,1)\,)\,.$ A new basis $\,a=(\ma_1,\ma_2)\,$ for $\,\reel ^2\,$ is given by

$$\ma_1 = (1,2)\,\,\,\,\mathrm{and}\,\,\,\,\ma_2 = (3,7)\,.$$
A

State the change-of-basis matrix $\,\matind eMa\,$ that shifts from $a$-coordinates to $e$-coordinates. A vector $\,\mv\,$ has, with respect to basis $a$, the coordinates $\,\vekind av= \begin{matr}{r} -1 \newline 1 \end{matr}\,.$ Determine the coordinates of $\,\mv\,$ with respect to basis $e\,.$

B

State the change-of-basis matrix $\,\matind aMe\,$ that shifts from $e$-coordinates to $a$-coordinates. A vector $\,\mv\,$ has, with respect to basis $e$, the coordinates $\,\vekind ev= \begin{matr}{r} 2 \newline 3 \end{matr}\,.$ Determine the coordinates of $\,\mv\,$ with respect to basis $a\,.$

Let $f:\reel ^2\rightarrow\reel ^2$ be a linear transformation that, with respect to the standard $e$-basis for $\reel ^2$, has the mapping matrix

$$ \matind eFe = \begin{matr}{rr} -1 & 1 \newline -4 & 3 \end{matr}. $$
C

Determine the mapping matrix of $f$ with respect to basis $a\,.$

D

A vector $\,\mv\,$ has, with respect to basis $a$, the coordinate vector $\,\vekind av= \begin{matr}{r} m \newline n \end{matr}\,.$ Determine the coordinate vector of $\,f(\mv)\,$ with respect to basis $a\,.$

Exercise 4: Linear Transformations of Abstract Vector Spaces

In this exercise we work with abstract vector spaces. We do not know whether we are dealing with number spaces, matrix spaces, polynomial spaces or some entirely different vector space. But this won’t prevent us from investigating a linear transfomation that maps vectors from one vector space to vectors in the other vector space.

A 2-dimensional vector space $V$ has a basis $a=(\ma_1,\ma_2)\,$, and a 3-dimensional vector space $W$ has a basis $c=(\mc_1,\mc_2,\mc_3)\,$. A linear transformation $\,f:V\rightarrow W\,$ is given by

$$\,f(\ma_1)=\mc_1-2\mc_2+\mc_3\,\,\,\,\mathrm{and}\,\,\,\,f(\ma_2)=-2\mc_1+4\mc_2-2\mc_3\,.$$
A

State the mapping matrix $\,\matind cFa\,$, and compute the image $\,\mathbf y\,$ of the vector $\,\mathbf x=3\ma_1-\ma_2\,$ using this mapping matrix.

B

Which of the vectors $\,\mathbf \ma_1+2\ma_2\,$ and $\,\mathbf 2\ma_1+\ma_2\,$ belong to the kernel of $f\,$? Solve the exercise without determining all of the kernel.

C

Determine without further computations a basis for the kernel of $f\,$.

D

Which of the vectors $\,\mc_1-2\mc_2+\mc_3\,$ and $\,2\mc_1-\mc_2+2\mc_3\,$ belong to $f(V)\,$?

E

State a basis for the range of $f\,$.

Exercise 5: Linear Mapping and Change of Basis. Maple

In $\,\reel^3\,$ we are given the vectors

$$\mv_1=(1,2,0), \mv_2=(0,1,4)\,\,\,\,\mathrm{and}\,\,\,\,\mv_3=(0,0,1)$$

and in $\,\reel^4\,$ we are given the vectors

$$\mw_1=(1,0,0,0), \mw_2=(1,1,0,0), \mw_3=(1,1,1,0)\,\,\,\,\mathrm{and}\,\,\,\,\mw_4=(1,1,1,1)\,.$$
A

Show that the set $\,v=(\mv_1,\mv_2,\mv_3)\,$ constitutes a basis for $\,\reel^3\,$ and that the set $\,w=(\mw_1,\mw_2,\mw_3,\mw_4)\,$ constitutes a basis for $\,\reel^4\,.$

Now let $f:\reel^3\rightarrow\reel^4$ be a linear transformation given by

$$ \begin{aligned} f(\mv_1)=\mw_1+\mw_2,\newline f(\mv_2)=\mw_2+\mw_3,\newline f(\mv_3)=\mw_3+\mw_4. \end{aligned}$$
B

State the mapping matrix of $f$ with respect to basis $v$ for $\reel^3$ and basis $w$ for $\reel^4$.

C

Determine the mapping matrix $f$ with respect to the standard bases for $\reel^3$ and $\reel^4$, respectively.

Exercise 6: Extra Training Exercise in Linear Mappings

Let $(\mathbf{e}_1,\mathbf{e}_2)$ denote the standard basis for $\reel ^2$ and let $c=(\mathbf{c}_1,\mathbf{c}_2,\mathbf{c}_3,\mathbf{c}_4)$ denote a basis for $\reel ^4$. Now let $f:\reel ^2\rightarrow\reel ^4$ be a linear transformation, where

$$ f(\mathbf{e}_1)=\mathbf{c}_1+\mathbf{c}_2+\mathbf{c}_3+\mathbf{c}_4\quad\mathrm{and}\quad f(\mathbf{e}_2)=\mathbf{c}_1-3\mathbf{c}_3+7\mathbf{c}_4. $$
A

Determine the mapping matrix of $f$ with respect to basis $e$ for $\reel^2$ and basis $c$ for $\reel^4.$

B

Solve the linear equation $\,f(\mx) =5\mc_1+3\mc_2-3\mc_3+17\mc_4\,.$