\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Computation of a Determinant. By Hand

We are given the matix $\,\mA=\begin{matr}{rrrr} 1 & 0 & 1 & 1 \newline 0 & 2 & 2 & 4 \newline 1 & 1 & 0 & 0 \newline 1 & 1 & 2 & 0 \end{matr}\,.$

A

Compute $\mathrm{det}(\mA)\,$ by expansion along a row or column of your own choice.

B

Using row operations, reduce $\,\mA\,$ to a triangular matrix, and use this to compute $\mathrm{det}(\mA)\,.$

Exercise 2: Determinants and Rank

A

Recap.

Given the polynomial $\,P(x)=-x^6+x^5+x^4-x^3\,,$ factorize $\,P(x)\,$ by first “taking $\,-x^3\,$ outside of a bracket”, leaving behind a third-degree polynomial within the bracket. Find the roots of this third-degree polynomial and then state all roots of $\,P(x)\,$ along with their algebraic multiplicities.

Given the matrix \begin{equation} \mA = \begin{matr}{llll} 1 & a & a^2 & a^3 \newline 1 & 0 & a^2 & a^3 \newline 1 & a & a & a^3 \newline 1 & a & a^2 & a \end{matr}, \quad \mathrm{where} \quad a \in \reel. \end{equation}

B

Determine (you can use Maple) the determinant of $\mA\,.$

C

For which values of $\,a\,$ is $\,\mA\,$ a singular matrix?

D

Find the rank of $\,\mA\,$ for each $\,a \in \lbrace -4, -3, -2, -1, 0, 1, 2, 3, 4 \rbrace\,.$

How is the rank related to the roots of the determinant found above?

E

Find the rank of $\mA$ for all $ a \in \reel $.

Exercise 3: Teaser Exercise in which the Identity Matrix Appears

Solve the following questions by hand and by clever mental work!

Given the matrices

$$ \mA = \begin{matr}{rr} 2 & 3 \newline 1 & 1 \end{matr} \, , \quad \mB = \begin{matr}{rr} 1 & 0 \newline 4 & 1 \end{matr} \, , \quad \mC = \begin{matr}{rr} -1 & 3 \newline 1 & -2 \end{matr} \quad \mathrm{and} \quad \mD = \begin{matr}{rr} 1 & 0 \newline -4 & 1 \end{matr}$$
A

Explain using determinants that $\,\mA\,$ and $\,\mB\,$ are regular and thus invertible. Can you conclude from this that $\,\mA\mB\,$ is regular and invertibel?

B

Compute $\,\mA\mC\,,$ $\,\mB\mD \,$ and $ \mD\mC $.

C

Find $ \mA^{-1} $ and $ \mB^{-1} \,.$

D

Using the preceding questions, find $\,(\mA\mB)^{-1}\,.$

Exercise 4: Determinant Acrobatics

We are given the matrices \begin{equation} \mA = \begin{matr}{rrr} 1 & 2 & 3 \newline 3 & -2 & 4 \newline 0 & 2 & 1 \end{matr} \quad \mathrm{and} \quad \mB = \begin{matr}{rrr} 4 & 2 & 1 \newline 0 & 7 & 9 \newline 1 & 1 & 2 \end{matr}. \end{equation}

A

Compute $\det(\mA) $ and $\det(\mB) $ using Maple.

B

Compute $\det(\mA^7)$ and $\det(\mA^{\transp}\mB)$ without using Maple.

C

Show that $\mA$ has an inverse, and state $\det(\mA^{-1})$ and $\det(\mA^{-7})$.

Exercise 5: Vectors: Addition and Multiplication by a Scalar

A

Draw two vectors $\,\mathbf a\,$ and $\,\mathbf b\,$ on a piece of paper. Construct the vectors $\,\mathbf a+\mathbf b\,$ and $\,\mathbf a-\mathbf b\,.$

B

Now try the product of a vector and a scalar. Draw a vector $\,\mathbf c\,$ on a piece of paper. What do the vectors $\,\frac 12 \mathbf c\,$ and $-3\mathbf c\,$ look like?

C

Open the GeoGebra-sheet ParametricRepresentation. Construct the following sets of points:

$$ \begin{align*} A=&\left\{\,P\,|\,\stackrel{\rightarrow}{OP}=\mathbf v+t\mathbf u\,,\,\,t\in \reel\,\right\}\newline B=&\left\{\,P\,|\,\stackrel{\rightarrow}{OP}=\mathbf v+t(\mathbf u-\mathbf v)\,,\,\,t\in \reel\,\right\}\newline C=&\left\{\,P\,|\,\stackrel{\rightarrow}{OP}=\mathbf v+s\mathbf u+t(\mathbf u-\mathbf v)\,,\,\,s\in \left[0,1\right]\,,\,t\in \left[0,1\right]\,\right\} \end{align*} $$

Exercise 6: Linear Combinations

In the plane the vectors $\mathbf u,\,\mathbf v,\,\mathbf s\,\,\mathrm{and}\,\, \mathbf t$ are given along with the parallelogram $A$. See the figure.

vektor7.png

A

State $\mathbf s$ as a linear combination of $\mathbf u\,\, \mathrm{and}\,\,\mathbf v$.

B

Show that $\mathbf v$ can be expressed by the linear combination

$$ \mathbf v=\frac 13 \,\mathbf s+\frac 16 \,\mathbf t\,. $$

C

Determine four real numbers $a,\,b,\,c\,\,\mathrm{and}\,\,d$ such that $A$ can be described by the parametric representation

$$ A= \{\,P\,\big|\, \stackrel{\rightarrow}{OP}=x\mathbf u+y\mathbf v\,\,\,\mathrm{where}\,\,\,x\in \left[\,a\,,\,b\,\right]\,\,\mathrm{and}\,\,y\in \left[\,c\,,\,d\,\right] \}\,.$$

Exercise 7: Linear Dependence or Independence

Three different scenarios in the plane are shown in the figure.

vektor13.png

A

Decide for each of the set of vectors $(\mathbf u,\mathbf v)$, $(\mathbf r,\mathbf s)$ and $(\mathbf a,\mathbf b,\mathbf c)$ whether or not they are linearly independent. If not, write the zero-vector as a (proper) linear combination of the vectors in the set.

Exercise 8: Change of Basis and Coordinates in the Plane

In this exercise we will work out how the coordinates of a given vector change when we change the basis.

abasis05.png

The figure shows the standard basis $\mathrm e=(\mathbf i, \mathbf j)$ and a basis $\mathrm a=(\mathbf a_1, \mathbf a_2)$.

A
  1. A vector $\mathbf u$ has the coordinates $(5,-1)$ with respect to the standard basis $\mathrm e$. Determine the coordinates of $\mathbf u$ with respect to basis $\mathrm a$.

  2. A vector $\mathbf v$ has the coordinates $(-1,-2)$ with respect to basis $\mathrm a$. Determine the coordinates of $\mathbf v$ with respect to basis $\mathrm e$.

Exercise 9: Change of Basis and Coordinates in 3D Space

In this exercise we will be working with a standard coordinate system as well as with a basis $\mathrm a$ as shown in the figure.

U2LDabasis.png

A

Determine the determinant of the matrix $\,\left[\,\ma_1\,\,\ma_2\,\,\ma_3\,\right]\,.$ Explain that the set $\,(\ma_1,\ma_2,\ma_3)\,$ actually constitutes a basis.

B

Three 3D vectors $\mathbf u,\,\mv$ and $\mathbf w$ are given in coordinates with respect to basis $\mathrm a$:

$$ _\mathrm a\mathbf u= \begin{matr}{r}-1\newline 0\newline 0\end{matr},\, _\mathrm a\mathbf v= \begin{matr}{r}-2\newline 1\newline 0\end{matr} \,\,\,\mathrm{and}\,\,\, _\mathrm a\mathbf w= \begin{matr}{r}2\newline 0\newline 1\end{matr}\,. $$

Determine the coordinates of $\mathbf u,\,\mv$ and $\mathbf w$ with respect to the standard basis using matrix-vector products.

The following questions are advanced.

C

A plane $\,\alpha\,$ in 3D space is given with respect to the $\,(O,\ma_1,\ma_2,\ma_3)$-coordinate system by the equation

$$ x+2y-2z=-1\,. $$

Determine a parametric representation of $\,\alpha\,$ with respect to the $\,(O,\ma_1,\ma_2,\ma_3)$-coordinate system.

D

Determine a parametric representation of $\,\alpha\,$ with respect to the standard coordinate system.

E

Determine an equation for $\alpha$ with respect to the standard coordinate system.