\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Computations of Determinants

Five $3\times 3$ matrices are given:

$$ \begin{matr}{rrr} 2 & -3 & 1 \newline -1 & 2 & 2 \newline 3 & -5 & 1 \end{matr},\, \,\begin{matr}{rrr} 4 & 2 & 1 \newline 0 & 1 & 2 \newline 0 & 0 & 2 \end{matr},\, \, \begin{matr}{rrr} 2 &0 & 0 \newline 3 & 5 & 0 \newline 9 & -4 & 3 \end{matr},\, \, \begin{matr}{ccc} 2-i & 0 & 0 \newline 0 & 2+i & 0 \newline 0 & 0 & 1 \end{matr},\, \, \begin{matr}{rrr} 4 & 2 & 1 \newline 1 & 1 & 2 \newline 1 & 1 & 2 \end{matr}\,. $$
A

By hand: Compute the determinant of the first matrix by expansion along a row or column of your choice.

B

In your head: Compute the determinant of the remaining four matrices.

Exercise 2: Parametric Representation of a Parallelogram

In the figure a plane contains a parallelogram $A$.

vektor16.png

A

Provide a parametric representation of $A$.

Exercise 3: Different Bases in 3D Space

We consider the coordinates of space vectors in different bases, see the figure.

abasis02.png

A

It is apparent from the figure above, that $\mathbf a$, $\mathbf b$ and $\mc$ are linearly independent. A basis $\mathrm m$ is given by $(\mathbf a, \mathbf b,\mathbf c)$. The endpoint of $\mathbf d$ is halfway along the edge opposite of the edge formed by $\mathbf b$ in the parallelepiped. Determine the coordinate vector $_\mathrm m\mathbf d$.

B

It is also apparent from the figure that $(\mathbf a, \mathbf b,\mathbf d)$ is a basis, let us call this basis $\mathrm n$. Compute the coordinate vector $_\mathrm n\mathbf c$.

Exercise 4: Geometry in the Plane

We consider three geometric vectors in a standard coordinate system in the plane:

vektorer_planen_b.png

A

Compute the length of each vector.

B

Compute the angle between $\,\ma\,$ and $\,\mb\,.$

C

Compute using the determinant method the area that is spanned by $\,\ma\,$ and $\,\mb\,.$

D

Compute the length of the projection vector $\mathrm{proj}(\mb,\mc)$.

E

Compute the projection vector $\mathrm{proj}(\mb,\mc)$.

Exercise 5: Geometry in 3D Space

We will compute the volume of the parallelepiped that is spanned by three geometric vectors in a standard coordinate system in 3D space:

paralleleppidum2.png

The coordinates of the vectors are given in the standard basis by

$$_\mathrm e\ma=(1,0,0)\,,\,\,_\mathrm e\mb=(1,2,0)\,,\,\,_\mathrm e\mc=\left(\,\frac 32,\frac 12,\frac 32\,\right)\,.$$
A

Find the volume of the parallelepiped using the formula: the area of the base times the height.

B

Determine

$$\det (\left[\,_\mathrm e\ma\,\,_\mathrm e\mb\,\,_\mathrm e\mc\,\right])\,.$$

Exercise 6: Linear Dependence or Independence

The following three vectors in 3D space are given in the standard coordinate system

$$(3,1,5),\,(2,3,9)\,\,\,\mathrm{and}\,\,\,(-5,3,3)\,.$$
A

Determine using Maple the determinant of the matrix that has the three vectors as columns. Are the three vectors linearly independent?

B

A consequence of the answer to question a) is that at least one of the three vectors can be written as a linear combination of the others. Write one of the three vectors as a linear combinations of the other two.

C

State the volume of the parallelepiped that is spanned by the vectors $\,(3,1,5),\,(2,3,9)\,\,\,\mathrm{and}\,\,\,(-5,3,3)\,.$

D

Determine a vector that is perpendicular to both $\,(3,1,5)\,$ and $\,(2,3,9)\,,$ and that together with the two vectors spans a parallelepiped with the volume $187\,.$