\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Today’s Wetware Exercise

Solve the equation $\,(z-3)(z^2+1)=0\,.$

Exercise 2: Linear Polynomials

A polynomial $\,P:\,\mathbb C\mapsto \mathbb C\,$ is given by

$\,P(z)=(2-i)z+i\,.$

A

Solve the equation $\,P(z)=0\,.$

B

Solve the equations $\,P(z)=2\,$ and $\,P(z)=-2+2i\,.$

Exercise 3: Binomial Quadratic Equations with Real Right-Hand-Sides

A

Let $\,r\,$ be a positive real number. Explain why the equation

$$z^2=-r$$

has exactly two solutions given by $\,z_0=-i\,\sqrt r\,$ and $\,z_1=i\,\sqrt r\,.$

B

Solve the equations $\,z^2=16\,$ and $\,z^2=-16\,.$

C

Solve the equations $\,z^2=17\,$ and $\,z^2=-17\,.$

D

Solve the equations $\,z^2=625\,$ and $\,z^2=-625\,.$

E

Let $\,b\,$ be a real number. Show that the solutions to $\,z^2=ib\,$ lie on the line $\,y=x\,$ when $\,b>0\,$ and on the line $\,y=-x\,$ when $\,b<0\,.$

Exercise 4: Factorizations

A

Without using any solution formula, show that $\,\,-1+2i\,\,$ is a root of the quadratic polynomial

$$\,P(z)=z^2+2z+5\,.$$

State based on this result the second root of the polynomial and write $\,P(z)$ on factorized form.

B

Given that $\,i\,$ and $\,1+i\,$ are roots of the polynomial

$$\,Q(z)=z^2-z-2iz-1+i\,\,,$$

simplify the fraction

$$\frac{z^2-z-2iz-1+i}{z-1-i}\,.$$

Exercise 5: The Theorem of Descent

A

Show that $x_0=1$ is a root of the polynomial

$$P(x)=x^3-x^2+x-1$$

and determine a quadratic polynomial $Q$ such that

$$P(x)=(x-1)\cdot Q(x)\,.$$

B

Compute all complex roots of the 7th degree polynomial

$$\,P(z)=(z^6-z^5+z^4-z^3)(z-1)\,.$$

Write the polynomial on its fully factorized form and state the multiplicity of its roots.

C

Show that $2$ is a double root of the polynomial $\,2z^4-4z^3-16z+32\,.$

D

Find all solutions to the equation

$$\,2z^4-4z^3-16z+32=0\,.$$

Exercise 6: Master the Concepts

Important clarifications concerning polynomials:

A
  • If an $n$th degree polynomial and an $n$th degree equation have equal coefficients, what is then actually the difference between them?

  • How many real roots does a complex polynomial of degree $n$ have?

  • How many real roots does a real polynomial of degree $n$ have?

  • How many roots, both real and complex, does a real polynomial of degree $n$ have?

  • For two $n$th degree polynomials $P$ and $Q\,$ it is known that every root of $P$ is a root of $Q$ with equal algebraic multiplicity. Are the two polynomials identical?

Exercise 7: Differentiation

A

A real polynomial $\,P\,$ is given by

$$ P(x)=25x^4-33x^3+49x^2-97x+96\,,\,\,x\in \Bbb R\,.$$

Determine the derivative of the function $\,P(x)\,.$

B

In section 1.10 of eNote 1 about complex numbers, differentiation of complex functions of a real variable is introduced. An example of a complex function of a real variable is a function $\,f\,$ such as the following:

$$ f(t)=t-3t^3+1+i\,(t^2-5t-1)\,,\,\,t\in \Bbb R\,. $$

Note that the real part and the imaginary part of $\,f\,$ each are a real polynomial function of a real variable. Determine the derivative $\,f’(t)\,$, and compute the value $\,f’(0)\,.$

C

The function $\,g\,$ is given by

$$ g(t)=(i\cdot t^2+t-i)\cdot((1+i)t-i)\,,\,\,t\in \Bbb R\,. $$

Exactly one solution to the equation $\,g’(t)=-6-i\,$ exists. Find it!

D

A complex polynomial function $\,Q\,$ of a real variable is given by

$$ Q(x)=(1+2i)x^2+(2-5i)x-(1-i)\,,\,\,x\in \Bbb R\,. $$

Show that $\,Q\,$ can be differentiated following the same rules that apply to real polynomials of a real variable, if just $\,i\,$ is treated as any other constant.

Exercise 8: Polynomial with Complex Coefficients (Advanced)

A

Solve the binomial quadratic equation $\,z^2=3-4i\,.$

B

Given the polynomial

$$\,P(z)=z^2-(1+2i)z-\frac 32+2i\,.$$

Compute the roots of the polynomial.

Exercise 9: The Geometry of a Quadratic Equation. Enjoy!

We are given the complex number $\,\alpha = 3-4i\, $ and the complex set of numbers

$$\,S=\{\,z \in \Bbb {C}\,\,\, \big|\, \, \, |z | =5\,\}\,.$$
A

Show that $\,\alpha \in S\,$. Illustrate.

We are now informed that the polynomial $\,P(z)=z^2+a\,z+b\,$ has real coefficients and that $\,\alpha\,$ is a root of $\,P(z)\,$.

B

State all roots of $\,P(z)\,$ and compute $\,a\,$ and $\,b\,$.

C

Let $c$ be a real number with the condition that $|c|\leq 10$. Show that the roots of the polynomial $\,Q(z)=z^2+c\,z+25\,$ belong to $\,S\,$.