\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Today’s Wetware Exercise

Differentiate $\,(x^2+7)^{13}\,$.

Exercise 2: The Derivative

A

Compute the derivatives of the following four functions in their respective domains:

$$ \begin{aligned} f_{1}(x) &= (x^{2} + 1)\cdot\sin(x) \newline f_{2}(x) &= \frac{\e^x}{x^{2}} \newline f_{3}(x) &= \cos(\ln{(x)}+1)\newline f_{4}(x) &= \cos(\cos(\cos(x))) \end{aligned} $$

Exercise 3: Derivatives of Complex Functions

A

Find for every $\,t\in \reel\,$ the derivatives of the following functions:

$$ \begin{aligned} f_{1}(t) &= t^{2} + i \, \sin(t) \newline f_{2}(t) &= 1+it^5\newline f_{3}(t) &= t^5-i\newline f_{4}(t) &= 3\, \e^{it}\newline f_{5}(t) &= i\, \e^{2t+3it} \end{aligned} $$

Exercise 4: To Differentiate an Inverse Function

If the function $\,y=f(x)\,$ has an inverse function $\,x=f^{-1}(y)\,,$ then we can find the derivative of $\,f^{-1}(y)\,$ like this:

$$(f^{-1})'(y)=\frac{1}{f'(x)}\,.$$
A

Sine has in the interval $\,\left[-\frac{\pi}2\,,\,\frac{\pi}2\,\right]\,$ an inverse function denoted $\arcsin\,.$ Determine the derivative of $\arcsin\,.$

Exercise 5: Tangent and arctan

The tangent function is, as is well known, defined by the expression

$$\,\tan(t)=\,\frac{\sin(t)}{\cos(t)}\,,\,\,t\in \reel \setminus \left\{\frac{\pi}2 +p\pi\,|\,p\in \mathbb Z\right\}\,.$$
A

Show that the derivative of the tangent function for every $\,t\,$ in the domain is given by the expression

$$\tan'(t)=\,1+\tan^2(t)\,.$$

B

Tangent has, on the open interval $\,]-\frac{\pi}2\,,\,\frac{\pi}2\,[\,$, an inverse function called arctangent denoted $\arctan\,.$ Determine $\,\mathrm{arctan}’(x)\,$ for every $\,x\,$ in the interval.

Exercise 6: Derivatives Directly from the Definition

A

Show that the real function $\,f\,$ given by $\,f(x)=x^2\,$ is differentiable for every $\,x_0 \in \reel$ with the derivative

$$\frac{d}{dx} f(x_0)=2x_0\,.$$

Then repeat with another function of your choice.

Exercise 7: Quadratic Equations with Real Coefficients

A

Solve the equations below both in $\reel$ and in $\mathbb C\,.$

  1. $\,2x^2+9x-5=0$

  2. $\,x^2-4x=0$

  3. $\,x^2-4x+13=0$

B

Solve the equation

$$2(x+1-i)(x+1+i)=0$$

and show that it is of the type: quadratic polynomial equation with real coefficients.

Exercise 8: Quadratic Equations with Complex Coefficients

A

Find the solutions to the equation

$$z^2-(1+5i)z=0\,.$$

B

Show that the following quadratic equation has a purely imaginary discriminant. Then solve the equation.

$$z^2+(2+2i)z-2i=0\,.$$

Exercise 9: Epsilon Functions (Advanced)

A

Show that the function \begin{equation} f_{1}(x)= \begin{cases} |x|/x& \text{if}\, x \neq 0 \newline 0& \text{if}\, x = 0 \end{cases} \end{equation} is not an epsilon function.

B

Show that the function \begin{equation} f_{2}(x)=1-\cos(x) \end{equation} is an epsilon function.

C

Show that the complex function \begin{equation} f_{3}(x)=i\e^{ix}-i \end{equation} is an epsilon function.